Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_5_a1, author = {A. N. Glebov and D. Zh. Zambalayeva}, title = {An approximation algorithm for the minimum {2-PSP} with different weight functions valued~1 and~2}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {11--37}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_5_a1/} }
TY - JOUR AU - A. N. Glebov AU - D. Zh. Zambalayeva TI - An approximation algorithm for the minimum 2-PSP with different weight functions valued~1 and~2 JO - Diskretnyj analiz i issledovanie operacij PY - 2011 SP - 11 EP - 37 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2011_18_5_a1/ LA - ru ID - DA_2011_18_5_a1 ER -
%0 Journal Article %A A. N. Glebov %A D. Zh. Zambalayeva %T An approximation algorithm for the minimum 2-PSP with different weight functions valued~1 and~2 %J Diskretnyj analiz i issledovanie operacij %D 2011 %P 11-37 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2011_18_5_a1/ %G ru %F DA_2011_18_5_a1
A. N. Glebov; D. Zh. Zambalayeva. An approximation algorithm for the minimum 2-PSP with different weight functions valued~1 and~2. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 5, pp. 11-37. http://geodesic.mathdoc.fr/item/DA_2011_18_5_a1/
[1] Ageev A. A., Baburin A. E., Gimadi E. Kh., “Polinomialnyi algoritm s otsenkoi tochnosti $3/4$ dlya otyskaniya dvukh neperesekayuschikhsya gamiltonovykh tsiklov maksimalnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 1, 13:2 (2006), 11–20 | MR
[2] Gimadi E. Kh., Glazkov Yu. V., Glebov A. N., “Priblizhënnye algoritmy resheniya zadachi o dvukh kommivoyazhërakh v polnom grafe s vesami rëber 1 i 2”, Diskret. analiz i issled. operatsii. Ser. 2, 14:2 (2007), 41–61 | MR
[3] Serdyukov A. I., “O nekotorykh ekstremalnykh obkhodakh v grafakh”, Upravlyaemye sistemy. Sb. nauch. tr., 17, 1978, 76–79 | MR | Zbl
[4] Baburin A. E., Della Croce F., Gimadi E. K., Glazkov Y. V., Paschos V. Th., “Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2”, Discrete Appl. Math., 157:9 (2009), 1988–1992 | DOI | MR | Zbl
[5] Berman P., Karpinski M., “$8/7$-Approximation algorithm for (1,2)-TSP”, Proc. of 17th annual ACM-SIAM symposium on discrete algorithms, SODA 2006 (Miami, January 22–26, 2006), ACM Press, New York, 2006, 641–648 | MR | Zbl
[6] Christofides N., Worst-case analysis of a new heuristic for the traveling salesman problem, Technical report CS-93-19, Carnegie Mellon University, 1976
[7] De Kort J. B. J. M., “Lower bounds for symmetric $K$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[8] De Kort J. B. J. M., “Upper bounds for the symmetric $2$-peripatetic salesman problem”, Optimization, 23:4 (1992), 357–367 | DOI | MR | Zbl
[9] De Kort J. B. J. M., “A branch and bound algorithm for symmetric $2$-peripatetic salesman problems”, Eur. J. Oper. Res., 70:2 (1993), 229–243 | DOI | MR | Zbl
[10] Papadimitriou C. H., Yannakakis M., “The traveling salesman problem with distances one and two”, Math. Oper. Res., 18:1 (1993), 1–11 | DOI | MR | Zbl