Multicriterial graph problems with MAXMIN criterion
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 5, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

$r$-Criterial problems for $r$-weighted graphs are considered $(r\geq2)$. Certain kinds of subgraphs are called admissible. To solve problem means to choose a Pareto optimal admissible subgraph from the complete set of alternatives (CSA). The main result of this paper is following. Suppose that a criterion, denoted by MAXMIN, requires maximization of the minimal first edges' weight of the admissible subgraph and there is an effective procedure constructing the CSA for a $(r-1)$-criterial problem without this MAXMIN criterion. Then the CSA for the initial $r$-criterial problem is created effectively. Bibliogr. 11.
Keywords: admissible subgraph, indicator of subgraph's quality, Pareto optimal subgraph.
@article{DA_2011_18_5_a0,
     author = {V. G. Vizing},
     title = {Multicriterial graph problems with {MAXMIN} criterion},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_5_a0/}
}
TY  - JOUR
AU  - V. G. Vizing
TI  - Multicriterial graph problems with MAXMIN criterion
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 3
EP  - 10
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_5_a0/
LA  - ru
ID  - DA_2011_18_5_a0
ER  - 
%0 Journal Article
%A V. G. Vizing
%T Multicriterial graph problems with MAXMIN criterion
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 3-10
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_5_a0/
%G ru
%F DA_2011_18_5_a0
V. G. Vizing. Multicriterial graph problems with MAXMIN criterion. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 5, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2011_18_5_a0/