Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 4, pp. 17-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a 2-peripatetic salesman problem on maximum which consists in finding two edge-disjoint Hamiltonian cycles of maximum total weight in a complete undirected graph. We present a cubic time approximation algorithm for this problem with guaranteed ratio $7/9$, the best known for today. Ill. 5, bibliogr. 14.
Keywords: traveling salesman problem, 2-peripatetic salesman problem, guaranteed approximation ratio.
Mots-clés : polynomial algorithm
@article{DA_2011_18_4_a1,
     author = {A. N. Glebov and D. Zh. Zambalayeva},
     title = {Polynomial algorithm with approximation ratio $7/9$ for maximum {2-PSP}},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {17--48},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_4_a1/}
}
TY  - JOUR
AU  - A. N. Glebov
AU  - D. Zh. Zambalayeva
TI  - Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 17
EP  - 48
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_4_a1/
LA  - ru
ID  - DA_2011_18_4_a1
ER  - 
%0 Journal Article
%A A. N. Glebov
%A D. Zh. Zambalayeva
%T Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 17-48
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_4_a1/
%G ru
%F DA_2011_18_4_a1
A. N. Glebov; D. Zh. Zambalayeva. Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 4, pp. 17-48. http://geodesic.mathdoc.fr/item/DA_2011_18_4_a1/