Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_3_a6, author = {A. N. Maksimenko}, title = {SAT polytopes are faces of polytopes of the traveling salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {76--83}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_3_a6/} }
A. N. Maksimenko. SAT polytopes are faces of polytopes of the traveling salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 3, pp. 76-83. http://geodesic.mathdoc.fr/item/DA_2011_18_3_a6/
[1] Bondarenko V. A., “Nepolinomialnaya nizhnyaya otsenka slozhnosti zadachi kommivoyazhëra v odnom klasse algoritmov”, Avtomatika i telemekhanika, 1983, no. 9, 45–50 | MR | Zbl
[2] Bondarenko V. A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost v kombinatornoi optimizatsii, LKI, M., 2008, 184 pp.
[3] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[4] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, M., 2001, 736 pp.
[5] Applegate D. L., Bixby R. E., Chvatal V., Cook W. J., The traveling salesman problem: a computational study, Princeton Univ. Press, Princeton, 2006, 606 pp. | MR | Zbl
[6] Billera L. J., Sarangarajan A., “All 0-1 polytopes are travelling salesman polytopes”, Combinatorica, 16 (1996), 175–188 | DOI | MR | Zbl
[7] Fiorini S., “A combinatorial study of partial order polytopes”, Eur. J. Comb., 24:2 (2003), 149–159 | DOI | MR | Zbl
[8] Karp R. M., Papadimitriou C. H., “On linear characterizations of combinatorial optimization problems”, SIAM J. Computing, 11:4 (1982), 620–632 | DOI | MR | Zbl
[9] Papadimitriou C. H., “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Program., 14:1 (1978), 312–324 | DOI | MR | Zbl