Bounds on average number of iterations of the algorithms for solving some Boolean programming problems
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 3, pp. 49-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the polynomial upper bounds on average number of iterations for some integer linear programming algorithms for solving the multidimensional knapsack problem and the set packing problem. These results were obtained using earlier suggested approach. Expansions of the known classes of problems with similar bounds are described. Tab. 2, bibliogr. 19.
Keywords: average number of iterations, knapsack problem, set packing problem, Gomory cut, branch and bound algorithm, $L$-class enumeration.
@article{DA_2011_18_3_a4,
     author = {L. A. Zaozerskaya and A. A. Kolokolov and N. G. Gofman},
     title = {Bounds on average number of iterations of the algorithms for solving some {Boolean} programming problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_3_a4/}
}
TY  - JOUR
AU  - L. A. Zaozerskaya
AU  - A. A. Kolokolov
AU  - N. G. Gofman
TI  - Bounds on average number of iterations of the algorithms for solving some Boolean programming problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 49
EP  - 64
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_3_a4/
LA  - ru
ID  - DA_2011_18_3_a4
ER  - 
%0 Journal Article
%A L. A. Zaozerskaya
%A A. A. Kolokolov
%A N. G. Gofman
%T Bounds on average number of iterations of the algorithms for solving some Boolean programming problems
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 49-64
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_3_a4/
%G ru
%F DA_2011_18_3_a4
L. A. Zaozerskaya; A. A. Kolokolov; N. G. Gofman. Bounds on average number of iterations of the algorithms for solving some Boolean programming problems. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 3, pp. 49-64. http://geodesic.mathdoc.fr/item/DA_2011_18_3_a4/