On kernel and shortest complexes of faces in the unit cube
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 75-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Studying extreme kernel complexes of faces of given dimension, we obtain lower estimates of the number of shortest complexes of faces in the unit $n$-dimensional cube. It is shown that the number of shortest complex $k$-dimensional faces is of the same logarithm order as the number of complexes consisting of no more than $2^{n-1}$ different faces of dimension $k$, with $1\le k\le c\cdot n$ and $c0.5$. This implies similar lower bounds for the maximum length of kernel and the number of shortest DNF Boolean functions. Bibliogr. 15.
Mots-clés :
face, interval, kernel face
Keywords: complex of faces in $n$-dimensional unit cube, Boolean function, shortest covering.
Keywords: complex of faces in $n$-dimensional unit cube, Boolean function, shortest covering.
@article{DA_2011_18_2_a6,
author = {I. P. Chukhrov},
title = {On kernel and shortest complexes of faces in the unit cube},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {75--94},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2011_18_2_a6/}
}
I. P. Chukhrov. On kernel and shortest complexes of faces in the unit cube. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 2, pp. 75-94. http://geodesic.mathdoc.fr/item/DA_2011_18_2_a6/