Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2011_18_1_a3, author = {A. V. Eremeev}, title = {The complexity of optimal recombination for the traveling salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {27--40}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2011_18_1_a3/} }
A. V. Eremeev. The complexity of optimal recombination for the traveling salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/DA_2011_18_1_a3/
[1] Borisovskii P. A., Eremeev A. V., “Geneticheskii algoritm dlya zadachi o vershinnom pokrytii grafa”, Matematika i informatika: nauka i obrazovanie, 7, OmGPU, Omsk, 2008, 49–54
[2] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[3] Agarwal C. C., Orlin J. B., Tai R. P., Optimized crossover for the independent set problem, Working paper # 3787-95, Massachusetts Institute of Technology, Cambridge, MA, 1995, 17 pp.
[4] Balas E., Niehaus W., “Optimized crossover-based genetic algorithms for the maximum cardinality and maximum weight clique problems”, J. Heuristics, 4:2 (1998), 107–122 | DOI | MR | Zbl
[5] Borisovsky P., Dolgui A., Eremeev A., “Genetic algorithms for a supply management problem: MIP-recombination vs greedy decoder”, Europ. J. Oper. Res., 195:3 (2009), 770–779 | DOI | Zbl
[6] Cook W., Seymour P., “Tour merging via branch-decomposition”, INFORMS J. Computing, 15:2 (2003), 233–248 | DOI | MR
[7] Cotta C., Alba E., Troya J. M., “Utilizing dynastically optimal forma recombination in hybrid genetic algorithms”, Proc. 5th Int. Conf. on Parallel Problem Solving from Nature, Lect. Notes Comput. Sci., 1498, Springer-Verl., Berlin, 1998, 305–314
[8] Dolgui A., Eremeev A., Guschinskaya O., “MIP-based GRASP and genetic algorithm for balancing transfer lines”, Matheuristics Hybridizing metaheuristics and mathematical programming, Springer-Verl., Berlin, 2010, 189–208
[9] Eppstein D., “The traveling salesman problem for cubic graphs”, J. Graph Algorithms Appl., 11:1 (2007), 61–81 | MR | Zbl
[10] Eremeev A. V., “On complexity of optimal recombination for binary representations of solutions”, Evolutionary Computation, 16:1 (2008), 127–147 | DOI | MR
[11] Held M., Karp R. M., “A dynamic programming approach to sequencing problems”, J. Soc. Ind. Appl. Math., 10 (1962), 196–210 | DOI | MR | Zbl
[12] Itai A., Papadimitriou C. H., Szwarcfiter J. L. “Hamilton paths in grid graphs”, SIAM J. Computing, 11:4 (1982), 676–686 | DOI | MR | Zbl
[13] Reeves C. R., “Genetic algorithms for the operations researcher”, INFORMS J. Comput., 9:3 (1997), 231–250 | DOI | Zbl
[14] Whitley D., Hains D., Howe A., “A hybrid genetic algorithm for the traveling salesman problem using generalized partition crossover”, Proc. 11th Int. Conf. on Parallel Problem Solving from Nature, Lect. Notes Comput. Sci., 6238, Springer-Verl., Berlin, 2010, 566–575
[15] Yagiura M., Ibaraki T., “The use of dynamic programming in genetic algorithms for permutation problems”, Europ. J. Oper. Res., 92 (1996), 387–401 | DOI | Zbl