Some properties of well-based sequences
Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 15-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. V. Kitaev stated a problem of finding the number of well-based sequences and of existence of a bijection between these objects and sets associated with the sequence A103580. Well-based sequences define the class of graphs for which independent sets are enlisted by S. V. Kitaev. In our paper, the desirable bijection is obtained and it is proved that the number of well-based sequences increases as $\Theta(2^{n/2})$. Bibliogr. 5.
Keywords: well-based sequence, sum-free set.
@article{DA_2011_18_1_a1,
     author = {A. A. Valyuzhenich},
     title = {Some properties of well-based sequences},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {15--19},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2011_18_1_a1/}
}
TY  - JOUR
AU  - A. A. Valyuzhenich
TI  - Some properties of well-based sequences
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2011
SP  - 15
EP  - 19
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2011_18_1_a1/
LA  - ru
ID  - DA_2011_18_1_a1
ER  - 
%0 Journal Article
%A A. A. Valyuzhenich
%T Some properties of well-based sequences
%J Diskretnyj analiz i issledovanie operacij
%D 2011
%P 15-19
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2011_18_1_a1/
%G ru
%F DA_2011_18_1_a1
A. A. Valyuzhenich. Some properties of well-based sequences. Diskretnyj analiz i issledovanie operacij, Tome 18 (2011) no. 1, pp. 15-19. http://geodesic.mathdoc.fr/item/DA_2011_18_1_a1/

[1] Sapozhenko A. A., “Gipoteza Kamerona–Erdesha”, Dokl. RAN, 393:6 (2003), 749–752 | MR

[2] Cameron P., Erdos P., “On the number of sets of integers with various properties”, Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 61–79 | MR

[3] Green B. J., “The Cameron–Erdos conjecture”, Bull. London. Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl

[4] Kitaev S., “Counting independent sets on path-schemes”, J. Integer Seq., 9:8 (2006), Article 06.2.2 | MR | Zbl

[5] Sloane N. J., The on-line encyclopedia of integer sequences http://www.research.att.com/njas/sequences/