Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2010_17_6_a3, author = {A. S. Kozlov}, title = {On compact vector summation within minimal strip}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {56--67}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2010_17_6_a3/} }
A. S. Kozlov. On compact vector summation within minimal strip. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 6, pp. 56-67. http://geodesic.mathdoc.fr/item/DA_2010_17_6_a3/
[1] Belov I. S., Stolin Ya. N., “Algoritm v odnomarshrutnoi zadache kalendarnogo planirovaniya”, Matematicheskaya ekonomika i funktsionalnyi analiz, Nauka, M., 1974, 248–257 | MR
[2] Grinberg V. S., Sevastyanov S. V., “Znachenie konstanty Shteinitsa”, Funktsion. analiz i ego pril., 14:2 (1980), 56–57 | MR | Zbl
[3] Kadets M. I., “Ob odnom svoistve vektornykh lomanykh v $n$-mernom prostranstve”, Uspekhi mat. nauk, 8:1 (1953), 139–143 | MR | Zbl
[4] Sevastyanov S. V., “Ob asimptoticheskom podkhode k nekotorym zadacham teorii raspisanii”, Upravlyaemye sistemy, 14, 1975, 40–51
[5] Sevastyanov S. V., “O priblizhennom reshenii nekotorykh zadach teorii raspisanii”, Metody diskret. analiza, 32, 1978, 66–75 | MR | Zbl
[6] Sevastyanov S. V., “Algoritmy s otsenkami dlya zadach Dzhonsona i Akersa–Fridmana v sluchae trekh stankov”, Upravlyaemye sistemy, 22, 1988, 51–57
[7] Sevastyanov S. V., “Teorema o kompaktnom summirovanii vektorov v dvumernom prostranstve”, Metody diskret. analiza, 47, 1988, 61–65 | MR
[8] Sevastyanov S. V., “Geometriya v teorii raspisanii”, Modeli i metody optimizatsii, Tr. AN SSSR. Sib. otd-nie. In-t matematiki, 10, Nauka, Novosibirsk, 1988, 226–261 | MR
[9] Sevastyanov S. V., “O kompaktnom summirovanii vektorov”, Diskret. matematika, 3:3 (1991), 66–72 | MR | Zbl
[10] Sevastyanov S. V., “Nestrogoe summirovanie vektorov na ploskosti i ego primenenie v zadachakh teorii raspisanii”, Diskret. analiz i issled. operatsii. Ser. 1, 2:2 (1995), 69–100 | MR | Zbl
[11] Avgustinovich S. V., Sevast'janov S. V., “Vector summation within minimal angle”, Comput. Geom., 2 (1993), 235–239 | DOI | MR | Zbl
[12] Banaszczyk W., “The Steinitz constant of the plane”, J. Reine Angew. Math., 373 (1987), 218–220 | MR | Zbl
[13] Banaszczyk W., “A note on the Steinitz constant of the Euclidean plane”, C. R. Math. Acad. Sci. Soc. R. Can., 12:4 (1990), 97–102 | MR | Zbl
[14] Banaszczyk W., “The Steinitz lemma on rearrangement of series for nuclear spaces”, J. Reine Angew. Math., 403 (1990), 187–200 | MR | Zbl
[15] Banaszczyk W., “The Steinitz lemma in $l^2_\infty$”, Period. Math. Hung., 22 (1991), 183–186 | DOI | MR | Zbl
[16] Barany I., Grinberg V. S., “A vector-sum theorem in two-dimensional space”, Period. Math. Hung., 16 (1985), 135–138 | DOI | MR | Zbl
[17] Behrend F. A., “The Steinitz–Gross theorem on sums of vectors”, Can. J. Math., 6 (1954), 108–124 | DOI | MR | Zbl
[18] Bergsröm V., “Zwei Satze über ebene Vectorpolygone”, Abhendleungen aus dem mathematischen Seminar der Hamburgischen Universität, 8, 1931, 206–214
[19] Damsteeg I., Halperin I., “The Steinitz–Gross theorem on sums of vectors”, Proc. Trans. Royal Soc. Canada Sect. III (3), 44 (1950), 31–35 | MR | Zbl
[20] Gross W., “Bedingt konvergente Reihen”, Monatsh. Math. Physik, 28 (1917), 221–237 | DOI | MR | Zbl
[21] Sevast'janov S. V., “On some geometric methods in scheduling theory: a survey”, Discrete Appl. Math., 55 (1994), 59–82 | DOI | MR
[22] Sevastianov S., “Nonstrict vector summation in multi-operation scheduling”, Ann. Oper. Res., 83 (1998), 179–211 | DOI | MR | Zbl
[23] Sevast'janov S. V., Banaszczyk W., “To the Steinitz lemma in coordinate form”, Diskrete Math., 169 (1997), 145–152 | DOI | MR
[24] Steinitz E., “Bedingt konvergente Reihen und convexe Systeme”, J. Reine Angew. Math., 143 (1913), 128–175 | Zbl