NP-completeness of~some problems of a~vectors subset choice
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the problem in data analysis reduces to problems of a vectors subset selection. The NP-completeness of these problems is proved. These problems are connected with searching a vector subset in a given set in Euclidian space under following conditions. The first condition is that the required subset has a given cardinality, and the second one is that this subset includes vectors which are close to each other under the criterion of minimum sum of squared distances. Bibliogr. 13.
Keywords: choice of a vector subset, clustering, algorithmic complexity, NP-completeness.
@article{DA_2010_17_5_a3,
     author = {A. V. Kel'manov and A. V. Pyatkin},
     title = {NP-completeness of~some problems of a~vectors subset choice},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {37--45},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - A. V. Pyatkin
TI  - NP-completeness of~some problems of a~vectors subset choice
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 37
EP  - 45
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/
LA  - ru
ID  - DA_2010_17_5_a3
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A A. V. Pyatkin
%T NP-completeness of~some problems of a~vectors subset choice
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 37-45
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/
%G ru
%F DA_2010_17_5_a3
A. V. Kel'manov; A. V. Pyatkin. NP-completeness of~some problems of a~vectors subset choice. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 37-45. http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/

[1] Baburin A. E., Gimadi E. Kh., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskret. analiz i issled. operatsii. Ser. 2, 14:1 (2007), 32–42 | MR

[2] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR

[3] Dolgushev A. V., Kelmanov A. V., “K voprosu ob algoritmicheskoi slozhnosti odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 17:2 (2010), 39–45 | MR

[4] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. RAN, 421:5 (2008), 590–592 | MR

[5] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 15:5 (2008), 20–34 | MR

[6] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2065 | MR

[7] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of euclidean sum-of-squares clustering, G-2008-33, Les cahiers du GERAD, 2008, 4 pp.

[8] Dasgupta S., The hardness of $k$-means clustering, Technical report CS-2007-0890, University of California, 2007, 6 pp.

[9] Edwards A. W. F., Cavalli-Sforza L. L., “A method for cluster analysis”, Biometrics, 21 (1965), 362–375 | DOI

[10] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl

[11] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Statistics Probability, v. 1, 1967, 281–297 | MR | Zbl

[12] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Proc. of 3rd Annual Workshop on Algorithms and Computation (WALCOM), Lect. Notes Comput. Sci., 5431, Springer-Verl., Berlin–Heidelberg–New York, 2009, 274–285 | Zbl

[13] Papadimitriou C. H., Computational complexity, Addison–Wesley, New York, 1994, 523 pp. | MR | Zbl