Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2010_17_5_a3, author = {A. V. Kel'manov and A. V. Pyatkin}, title = {NP-completeness of~some problems of a~vectors subset choice}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {37--45}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/} }
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin TI - NP-completeness of~some problems of a~vectors subset choice JO - Diskretnyj analiz i issledovanie operacij PY - 2010 SP - 37 EP - 45 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/ LA - ru ID - DA_2010_17_5_a3 ER -
A. V. Kel'manov; A. V. Pyatkin. NP-completeness of~some problems of a~vectors subset choice. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 37-45. http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/
[1] Baburin A. E., Gimadi E. Kh., Glebov N. I., Pyatkin A. V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskret. analiz i issled. operatsii. Ser. 2, 14:1 (2007), 32–42 | MR
[2] Gimadi E. Kh., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1 (2006), 55–74 | MR
[3] Dolgushev A. V., Kelmanov A. V., “K voprosu ob algoritmicheskoi slozhnosti odnoi zadachi klasternogo analiza”, Diskret. analiz i issled. operatsii, 17:2 (2010), 39–45 | MR
[4] Kelmanov A. V., Pyatkin A. V., “O slozhnosti odnogo iz variantov zadachi vybora podmnozhestva “pokhozhikh” vektorov”, Dokl. RAN, 421:5 (2008), 590–592 | MR
[5] Kelmanov A. V., Pyatkin A. V., “Ob odnom variante zadachi vybora podmnozhestva vektorov”, Diskret. analiz i issled. operatsii, 15:5 (2008), 20–34 | MR
[6] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2065 | MR
[7] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of euclidean sum-of-squares clustering, G-2008-33, Les cahiers du GERAD, 2008, 4 pp.
[8] Dasgupta S., The hardness of $k$-means clustering, Technical report CS-2007-0890, University of California, 2007, 6 pp.
[9] Edwards A. W. F., Cavalli-Sforza L. L., “A method for cluster analysis”, Biometrics, 21 (1965), 362–375 | DOI
[10] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 314 pp. | MR | Zbl
[11] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Statistics Probability, v. 1, 1967, 281–297 | MR | Zbl
[12] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Proc. of 3rd Annual Workshop on Algorithms and Computation (WALCOM), Lect. Notes Comput. Sci., 5431, Springer-Verl., Berlin–Heidelberg–New York, 2009, 274–285 | Zbl
[13] Papadimitriou C. H., Computational complexity, Addison–Wesley, New York, 1994, 523 pp. | MR | Zbl