NP-completeness of~some problems of a~vectors subset choice
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 37-45

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the problem in data analysis reduces to problems of a vectors subset selection. The NP-completeness of these problems is proved. These problems are connected with searching a vector subset in a given set in Euclidian space under following conditions. The first condition is that the required subset has a given cardinality, and the second one is that this subset includes vectors which are close to each other under the criterion of minimum sum of squared distances. Bibliogr. 13.
Keywords: choice of a vector subset, clustering, algorithmic complexity, NP-completeness.
@article{DA_2010_17_5_a3,
     author = {A. V. Kel'manov and A. V. Pyatkin},
     title = {NP-completeness of~some problems of a~vectors subset choice},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {37--45},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - A. V. Pyatkin
TI  - NP-completeness of~some problems of a~vectors subset choice
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 37
EP  - 45
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/
LA  - ru
ID  - DA_2010_17_5_a3
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A A. V. Pyatkin
%T NP-completeness of~some problems of a~vectors subset choice
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 37-45
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/
%G ru
%F DA_2010_17_5_a3
A. V. Kel'manov; A. V. Pyatkin. NP-completeness of~some problems of a~vectors subset choice. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 37-45. http://geodesic.mathdoc.fr/item/DA_2010_17_5_a3/