A family of two-dimensional words with maximal pattern complexity~$2k$
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximal pattern complexity $p^*(k)$ is one of the counting functions over infinite words. In this paper we consider it over two-dimensional words. We construct an infinite family of two-dimensional words with the maximal pattern complexity $p^*(k)=2k$ for $k\in\mathbb N$. It is the minimum of maximal pattern complexity over two-dimensional and not two-periodic words. Bibliogr. 21.
Keywords: complexity, maximal pattern complexity, two-dimensional word, Toeplitz word.
@article{DA_2010_17_5_a0,
     author = {Ts. Ch.-D. Batueva},
     title = {A family of two-dimensional words with maximal pattern complexity~$2k$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_5_a0/}
}
TY  - JOUR
AU  - Ts. Ch.-D. Batueva
TI  - A family of two-dimensional words with maximal pattern complexity~$2k$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 3
EP  - 14
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_5_a0/
LA  - ru
ID  - DA_2010_17_5_a0
ER  - 
%0 Journal Article
%A Ts. Ch.-D. Batueva
%T A family of two-dimensional words with maximal pattern complexity~$2k$
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 3-14
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_5_a0/
%G ru
%F DA_2010_17_5_a0
Ts. Ch.-D. Batueva. A family of two-dimensional words with maximal pattern complexity~$2k$. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 5, pp. 3-14. http://geodesic.mathdoc.fr/item/DA_2010_17_5_a0/