About straight automorphisms of Hamilton cycles in the Boolean $n$-cube
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 4, pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The upper bound for order of straight automorphism group of Hamilton cycle in the $n$-cube is obtained. It is proved that this bound is accessible if and only if the orbit graph of some fixed automorphism of the $n$-cube contains a Hamilton cycle satisfying an additional condition. Bibliogr. 11.
Keywords: $n$-cube, Hamilton cycle
Mots-clés : automorphism.
@article{DA_2010_17_4_a2,
     author = {A. L. Perezhogin},
     title = {About straight automorphisms of {Hamilton} cycles in the {Boolean} $n$-cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_4_a2/}
}
TY  - JOUR
AU  - A. L. Perezhogin
TI  - About straight automorphisms of Hamilton cycles in the Boolean $n$-cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 32
EP  - 42
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_4_a2/
LA  - ru
ID  - DA_2010_17_4_a2
ER  - 
%0 Journal Article
%A A. L. Perezhogin
%T About straight automorphisms of Hamilton cycles in the Boolean $n$-cube
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 32-42
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_4_a2/
%G ru
%F DA_2010_17_4_a2
A. L. Perezhogin. About straight automorphisms of Hamilton cycles in the Boolean $n$-cube. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 4, pp. 32-42. http://geodesic.mathdoc.fr/item/DA_2010_17_4_a2/

[1] Evdokimov A. A., “O numeratsii podmnozhestv konechnogo mnozhestva”, Metody diskretnogo analiza v reshenii kombinatornykh zadach. Sb. nauch. tr., 34, In-t matematiki SO AN SSSR, Novosibirsk, 1980, 8–26 | MR

[2] Perezhogin A. L., “Ob avtomorfizmakh tsiklov v $n$-mernom bulevom kube”, Diskret. analiz i issled. operatsii. Ser. 1, 14:3 (2007), 67–79 | MR

[3] Kholl M., Teoriya grupp, Izd-vo inostr. lit., M., 1962, 468 pp.

[4] Dejter I. J., Delgado A. A., “Classes of Hamilton cycles in the 5-cube”, J. Comb. Math. Comb. Comput., 61 (2007), 81–95 | MR | Zbl

[5] Gilbert E. N., “Gray codes and paths on the $n$-cube”, Bell System Tech. J., 37:3 (1958), 815–826 | MR

[6] Goddyn L., Gvozdjak P., “Binary Gray codes with long bit runs”, Electron. J. Comb., 10 (2003), R27 | MR | Zbl

[7] Kreweras G., “Some remarks about Hamiltonian circuits and cycles on hypercubes”, Bull. Inst. Comb. Appl., 12 (1994), 19–22 | MR | Zbl

[8] Ramras M., “A new method of generating Hamiltonian cycles on the $n$-cube”, Discrete Math., 85:3 (1990), 329–331 | DOI | MR | Zbl

[9] Savage C. D., “A survey of combinatorial Gray codes”, SIAM Rev., 39:4 (1997), 605–629 | DOI | MR | Zbl

[10] Savage C. D., Shields I., “A Hamilton path heuristic with applications to the middle two levels problem”, Congr. Numerantium, 140 (1999), 161–178 | MR | Zbl

[11] Shields I., Shields B. J., Savage C. D., “An update on the middle levels problem”, Discrete Math., 309 (2009), 5271–5277 | DOI | MR | Zbl