Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2010_17_4_a0, author = {A. V. Eremeev}, title = {A fully polynomial randomized approximation scheme based on an evolutionary algorithm}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--17}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2010_17_4_a0/} }
TY - JOUR AU - A. V. Eremeev TI - A fully polynomial randomized approximation scheme based on an evolutionary algorithm JO - Diskretnyj analiz i issledovanie operacij PY - 2010 SP - 3 EP - 17 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2010_17_4_a0/ LA - ru ID - DA_2010_17_4_a0 ER -
A. V. Eremeev. A fully polynomial randomized approximation scheme based on an evolutionary algorithm. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/DA_2010_17_4_a0/
[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[2] Eremeev A. V., O svyazi dinamicheskogo programmirovaniya i mnogokriterialnykh evolyutsionnykh algoritmov, Preprint, Izd-vo Omskogo gos. un-ta, Omsk, 2008, 20 pp.
[3] Kovalev M. Ya., Shafranskii Ya. M., “Postroenie $\varepsilon$-priblizhennykh algoritmov optimizatsii funktsii na posledovatelno konstruiruemykh mnozhestvakh”, Zhurn. vychisl. matematiki i mat. fiziki, 26:7 (1986), 1006–1018 | MR | Zbl
[4] Moiseev N. N., Ivanilov Yu. P., Stolyarova E. M., Metody optimizatsii, Nauka, M., 1978, 352 pp.
[5] Norenkov I. P., “Evristiki i ikh kombinatsii v geneticheskikh metodakh diskretnoi optimizatsii”, Informatsionnye tekhnologii, 1999, no. 1, 2–7
[6] Beyer H.-G., Schwefel H.-P., Wegener I., “How to analyse evolutionary algorithms”, Theor. Comp. Sci., 287:1 (2002), 101–130 | DOI | MR | Zbl
[7] Chauhan S. S., Eremeev A. V., Romanova A. A., Servakh V. V., Woeginger G. J., “Approximation of the supply scheduling problem”, Oper. Res. Lett., 33:3 (2005), 249–254 | DOI | MR | Zbl
[8] Doerr B., Eremeev A., Horoba C., Neumann F., Theile M., “Evolutionary algorithms and dynamic programming”, Proc. Genetic Evolutionary Computation Conf. (GECCO), ACM Press, New York, 2009, 771–777
[9] Friedrich T., Hebbinghaus N., Neumann F., He J., Witt C., “Approximating covering problems by randomized search heuristics using multi-objective models”, Proc. Genetic Evolutionary Computation Conf. (GECCO), ACM Press, New York, 2007, 797–804
[10] Giel O., Wegener I., “Evolutionary algorithms and the maximum matching problem”, Proc. Symp. Theor. Aspects Comput. Sci. (STACS), Springer-Verl., Berlin–Heidelberg–New York, 2003, 415–426 | MR | Zbl
[11] Held M., Karp R. M., “A dynamic programming approach to sequencing problems”, J. SIAM, 10 (1962), 196–210 | MR | Zbl
[12] Ibarra O. H., Kim C. E., “Fast approximation algorithms for the knapsack and sum of subset problems”, J. ACM, 22:4 (1975), 463–468 | DOI | MR | Zbl
[13] Koza J. R., Genetic programming, v. II, Automatic discovery of reusable programs (complex adaptive systems), MIT Press, Cambridge, MA, 1994, 746 pp. | Zbl
[14] Michalewicz Z., Genetic algorithms + data structures = evolution programs, Springer-Verl., Berlin–Heidelberg–New York, 1996, 387 pp. | MR | Zbl
[15] Neumann F., Reichel J., Skutella M., “Computing minimum cuts by randomized search heuristics”, Proc. Genetic Evolutionary Computation Conf. (GECCO), ACM Press, New York, 2008, 779–786
[16] Neumann F., Wegener I., “Randomized local search, evolutionary algorithms, and the minimum spanning tree problem”, Theor. Comput. Sci., 378:1 (2007), 32–40 | DOI | MR | Zbl
[17] Rechenberg I., Evolutionsstrategie: optimerung technischer Systeme nach prinzipen der biologischen Evolution, Formann–Holzboog Verl., Schtuttgart, 1973, 170 pp.
[18] Reeves C. R., “Genetic algorithms for the operations researcher”, INFORMS J. Computing, 9:3 (1997), 231–250 | DOI | Zbl
[19] Reeves C. R., Rowe J. E., Genetic algorithms: principles and perspectives, Kluwer, Norwell, MA, 2002, 332 pp. | MR
[20] Reichel J., Skutella M., “Evolutionary algorithms and matroid optimization problems”, Proc. Genetic Evolutionary Computation Conf. (GECCO), ACM Press, New York, 2007, 947–954
[21] Rudolph G., “Finite Markov chain results in evolutionary computation: a tour d'horizon”, Fundam. Inform., 35:1–4 (1998), 67–89 | MR | Zbl
[22] Scharnow J., Tinnefeld K., Wegener I., “The analysis of evolutionary algorithms on sorting and shortest paths problems”, J. Math. Model. Algorithms, 3 (2004), 349–366 | DOI | MR | Zbl
[23] Theile M., “Exact solutions to the travelling salesperson problem by a population-based evolutionary algorithm”, Proc. European Conf. Evolutionary Computation Combinatorial Optimisation (EvoCOP), Lect. Notes Comput. Sci., 5482, Springer-Verl., Berlin–Heidelberg–New York, 2009, 145–155
[24] Woeginger G. J., “When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?”, INFORMS J. Computing, 12:1 (2000), 57–74 | DOI | MR | Zbl