On construction of vertex-transitive partitions of $n$-cube into perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 84-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches to construct vertex-transitive and 2-transitive partitions of $n$-cube into perfect codes are introduced along with the lower bounds on the number of inequivalent transitive, vertex-transitive and 2-transitive partitions of $n$-cube into perfect codes. Bibl. 16.
Keywords: perfect binary code, $k$-transitive partition of $n$-cube.
Mots-clés : vertex-transitive partition
@article{DA_2010_17_3_a5,
     author = {F. I. Solov'eva and G. K. Guskov},
     title = {On construction of vertex-transitive partitions of $n$-cube into perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {84--100},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_3_a5/}
}
TY  - JOUR
AU  - F. I. Solov'eva
AU  - G. K. Guskov
TI  - On construction of vertex-transitive partitions of $n$-cube into perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 84
EP  - 100
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_3_a5/
LA  - ru
ID  - DA_2010_17_3_a5
ER  - 
%0 Journal Article
%A F. I. Solov'eva
%A G. K. Guskov
%T On construction of vertex-transitive partitions of $n$-cube into perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 84-100
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_3_a5/
%G ru
%F DA_2010_17_3_a5
F. I. Solov'eva; G. K. Guskov. On construction of vertex-transitive partitions of $n$-cube into perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 3, pp. 84-100. http://geodesic.mathdoc.fr/item/DA_2010_17_3_a5/

[1] Avgustinovich S. V., Soloveva F. I., Kheden U., “O razbieniyakh $n$-kuba na neekvivalentnye sovershennye kody”, Probl. peredachi inform., 43:4 (2007), 45–50 | MR | Zbl

[2] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Probl. kibernetiki, 8, Fizmatgiz, M., 1962, 337–339 | MR

[3] Soloveva F. I., “O dvoichnykh negruppovykh kodakh”, Metody diskretnogo analiza v izuchenii bulevykh funktsii i grafov, 37, In-t matematiki SO RAN, Novosibirsk, 1981, 65–76 | MR

[4] Soloveva F. I., “O postroenii tranzitivnykh kodov”, Probl. peredachi inform., 41:3 (2005), 23–31 | MR | Zbl

[5] Soloveva F. I., “O tranzitivnykh razbieniyakh $n$-kuba na kody”, Probl. peredachi inform., 45:1 (2009), 27–35 | MR

[6] Solovëva F. I., Los A. V., “O postroenii razbienii na sovershennye $q$-znachnye kody”, Diskret. analiz i issled. operatsii, 16:3 (2009), 63–73 | MR

[7] Fon-der-Flaass D. G., “Sovershennye 2-raskraski giperkuba”, Sib. mat. zhurn., 48:4 (2007), 923–930 | MR | Zbl

[8] Avgustinovich S. V., Lobstein A., Solov'eva F. I., “Intersection matrices for partitions by binary perfect codes”, IEEE Trans. Inform. Theory, 47:4 (2001), 1621–1624 | DOI | MR | Zbl

[9] Cohen G., Honkala I., Lobstein A., Litsyn S., Covering codes, Elsevier, Amsterdam–Lausanne–New York–Oxford–Shannon–Tokyo, 1998, 542 pp. | MR

[10] Etzion T., Vardy A., “Perfect binary codes and tilings: problems and solutions”, SIAM J. Discrete Math., 11:2 (1998), 205–223 | DOI | MR | Zbl

[11] Heden O., Solov'eva F. I., “On partitions of $n$-cube into Hamming codes”, Adv. Math. Commun., 3:4 (2009), 385–397 | DOI | MR | Zbl

[12] Mollard M., “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl

[13] Östergård P. R. J., “On a hypercube coloring problem”, J. Combin. Theory Ser. A, 108 (2004), 199–204 | DOI | MR | Zbl

[14] Phelps K. T., “An enumeration of 1-perfect binary codes”, Australasian J. Combin., 21 (2000), 287–298 | MR | Zbl

[15] Solov'eva F. I., On perfect codes and related topics, Com$^2$Mac, Lect. Note. Ser., 13, Pohang Univ. Sci. Technology, Pohang, 2004, 80 pp.

[16] Solov'eva F. I., “Existence of transitive partitions into binary codes”, Proc. 11th Int. Workshop Algebr. Comb. Coding Theory (Pamporovo, Bulgaria, June 2008), Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Pamporovo, 2008, 267–272