Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2010_17_2_a2, author = {A. V. Dolgushev and A. V. Kel'manov}, title = {On the issue of algorithmic complexity of one cluster analysis problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {39--45}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/} }
TY - JOUR AU - A. V. Dolgushev AU - A. V. Kel'manov TI - On the issue of algorithmic complexity of one cluster analysis problem JO - Diskretnyj analiz i issledovanie operacij PY - 2010 SP - 39 EP - 45 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/ LA - ru ID - DA_2010_17_2_a2 ER -
A. V. Dolgushev; A. V. Kel'manov. On the issue of algorithmic complexity of one cluster analysis problem. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 39-45. http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/
[1] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2067
[2] Aloise D., Hansen P., On the complexity of minimum sum-of-squares clustering, Les Cahiers du GERAD, G-2007-50, 2007, 12 pp.
[3] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of Euclidean sum-of-squares clustering, Les Cahiers du GERAD, G-2008-33, 2008, 4 pp.
[4] Drineas P., Frieze A., Kannan R., Vempala S., Vinay V., “Clustering large graphs via the singular value decomposition”, Machine Learning, 56 (2004), 9–33 | DOI | Zbl
[5] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, CA, 1979, 338 pp. | MR | Zbl
[6] Inaba M., Katch N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-dased clustering”, Proc. Ann. Symp. Comput. Geom., Stony Brook, NY, USA, 1994, 332–339
[7] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Stat. Probab., v. 1, University of California Press, Berkley, 1967, 281–297 | MR | Zbl
[8] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Lect. Notes Comput. Sci., 5431, 2009, 284–285
[9] Rao M., “Cluster analysis and mathematical programming”, J. Am. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl