On the issue of algorithmic complexity of one cluster analysis problem
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 39-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the problem of minimum sum-of-squares clustering (MSSC) of a set of euclidian vectors is proved to be NP-complete when the dimension of the space is a part and the number of clusters is not a part of the input. Bibl. 9.
Keywords: clustering, MSSC, algorithmic complexity, NP-completeness.
@article{DA_2010_17_2_a2,
     author = {A. V. Dolgushev and A. V. Kel'manov},
     title = {On the issue of algorithmic complexity of one cluster analysis problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/}
}
TY  - JOUR
AU  - A. V. Dolgushev
AU  - A. V. Kel'manov
TI  - On the issue of algorithmic complexity of one cluster analysis problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 39
EP  - 45
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/
LA  - ru
ID  - DA_2010_17_2_a2
ER  - 
%0 Journal Article
%A A. V. Dolgushev
%A A. V. Kel'manov
%T On the issue of algorithmic complexity of one cluster analysis problem
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 39-45
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/
%G ru
%F DA_2010_17_2_a2
A. V. Dolgushev; A. V. Kel'manov. On the issue of algorithmic complexity of one cluster analysis problem. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 39-45. http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/