On the issue of algorithmic complexity of one cluster analysis problem
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the problem of minimum sum-of-squares clustering (MSSC) of a set of euclidian vectors is proved to be NP-complete when the dimension of the space is a part and the number of clusters is not a part of the input. Bibl. 9.
Keywords: clustering, MSSC, algorithmic complexity, NP-completeness.
@article{DA_2010_17_2_a2,
     author = {A. V. Dolgushev and A. V. Kel'manov},
     title = {On the issue of algorithmic complexity of one cluster analysis problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/}
}
TY  - JOUR
AU  - A. V. Dolgushev
AU  - A. V. Kel'manov
TI  - On the issue of algorithmic complexity of one cluster analysis problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 39
EP  - 45
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/
LA  - ru
ID  - DA_2010_17_2_a2
ER  - 
%0 Journal Article
%A A. V. Dolgushev
%A A. V. Kel'manov
%T On the issue of algorithmic complexity of one cluster analysis problem
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 39-45
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/
%G ru
%F DA_2010_17_2_a2
A. V. Dolgushev; A. V. Kel'manov. On the issue of algorithmic complexity of one cluster analysis problem. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 2, pp. 39-45. http://geodesic.mathdoc.fr/item/DA_2010_17_2_a2/

[1] Kelmanov A. V., Pyatkin A. V., “O slozhnosti nekotorykh zadach poiska podmnozhestv vektorov i klasternogo analiza”, Zhurn. vychisl. matematiki i mat. fiziki, 49:11 (2009), 2059–2067

[2] Aloise D., Hansen P., On the complexity of minimum sum-of-squares clustering, Les Cahiers du GERAD, G-2007-50, 2007, 12 pp.

[3] Aloise D., Deshpande A., Hansen P., Popat P., NP-hardness of Euclidean sum-of-squares clustering, Les Cahiers du GERAD, G-2008-33, 2008, 4 pp.

[4] Drineas P., Frieze A., Kannan R., Vempala S., Vinay V., “Clustering large graphs via the singular value decomposition”, Machine Learning, 56 (2004), 9–33 | DOI | Zbl

[5] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, CA, 1979, 338 pp. | MR | Zbl

[6] Inaba M., Katch N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-dased clustering”, Proc. Ann. Symp. Comput. Geom., Stony Brook, NY, USA, 1994, 332–339

[7] MacQueen J. B., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Math. Stat. Probab., v. 1, University of California Press, Berkley, 1967, 281–297 | MR | Zbl

[8] Mahajan M., Nimbhorkar P., Varadarajan K., “The planar $k$-means problem is NP-hard”, Lect. Notes Comput. Sci., 5431, 2009, 284–285

[9] Rao M., “Cluster analysis and mathematical programming”, J. Am. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl