Monomial automorphisms of the linear and simple components of the Hamming code
Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 1, pp. 11-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear and simple components of the Hamming code are the spans of the codewords having weight 3 and unit in the given coordinate position over the finite field $\mathbb{F}_q$ and its prime subfield $\mathbb{F}_p$ respectively. The monomial automorphism groups of such components are described. The order of the monomial automorphism group of a linear component is obtained. Bibl. 21.
Keywords: linear component, simple component, the Hamming code
Mots-clés : monomial automorphism group.
@article{DA_2010_17_1_a1,
     author = {E. V. Gorkunov},
     title = {Monomial automorphisms of the linear and simple components of the {Hamming} code},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {11--33},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2010_17_1_a1/}
}
TY  - JOUR
AU  - E. V. Gorkunov
TI  - Monomial automorphisms of the linear and simple components of the Hamming code
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2010
SP  - 11
EP  - 33
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2010_17_1_a1/
LA  - ru
ID  - DA_2010_17_1_a1
ER  - 
%0 Journal Article
%A E. V. Gorkunov
%T Monomial automorphisms of the linear and simple components of the Hamming code
%J Diskretnyj analiz i issledovanie operacij
%D 2010
%P 11-33
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2010_17_1_a1/
%G ru
%F DA_2010_17_1_a1
E. V. Gorkunov. Monomial automorphisms of the linear and simple components of the Hamming code. Diskretnyj analiz i issledovanie operacij, Tome 17 (2010) no. 1, pp. 11-33. http://geodesic.mathdoc.fr/item/DA_2010_17_1_a1/

[1] Avgustinovich S. V., Solovëva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\widetilde\alpha$-komponent”, Probl. peredachi inform., 33:3 (1997), 15–21 | MR | Zbl

[2] Avgustinovich S. V., Solovëva F. I., Kheden U., “O strukture gruppy simmetrii kodov Vasileva”, Probl. peredachi inform., 41:2 (2005), 42–49 | MR | Zbl

[3] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Problemy kibernetiki, 8, Fizmatgiz, M., 1962, 337–339 | MR

[4] Gorkunov E. V., “Gruppa perestanovochnykh avtomorfizmov $q$-ichnogo koda Khemminga”, Probl. peredachi inform., 45:4 (2009), 18–25

[5] Los A. V., “Postroenie sovershennykh $q$-znachnykh kodov posledovatelnymi sdvigami $\widetilde\alpha$-komponent”, Probl. peredachi inform., 40:1 (2004), 40–47 | MR | Zbl

[6] Los A. V., “Postroenie sovershennykh $q$-ichnykh kodov svitchingami prostykh komponent”, Probl. peredachi inform., 42:1 (2006), 34–42 | MR | Zbl

[7] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[8] Malyugin S. A., “O poryadke gruppy avtomorfizmov sovershennykh dvoichnykh kodov”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 91–100 | MR | Zbl

[9] Markov A. A., “O preobrazovaniyakh, ne rasprostranyayuschikh iskazheniya”, Izbrannye trudy. T. II. Teoriya algoritmov i konstruktivnaya matematika, matematicheskaya logika, informatika i smezhnye voprosy, MTsNMO, M., 2003, 70–93

[10] Solovëva F. I., Topalova S. T., “O gruppakh avtomorfizmov sovershennykh dvoichnykh kodov i sistem troek Shteinera”, Probl. peredachi inform., 36:4 (2000), 53–58 | MR | Zbl

[11] Solovëva F. I., Topalova S. T., “Sovershennye dvoichnye kody i sistemy troek Shteinera s maksimalnymi poryadkami grupp avtomorfizmov”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 101–110 | MR | Zbl

[12] Avgustinovich S. V., Solov'eva F. I., “Perfect binary codes with trivial automorphism group”, Proc. Int. Workshop on information theory (Killarney, Ireland, June, 1998), IEEE, Piscataway, 1998, 114–115

[13] Constantinescu I., Heise W., “On the concept of code-isomorphy”, J. Geom., 57 (1996), 63–69 | DOI | MR | Zbl

[14] Huffman W. C., “Codes and groups”, Handbook of coding theory, Ch. 6, Elsevier Science, Amsterdam–New York, 1998, 1345–1440 | MR | Zbl

[15] Lindström B., “On group and nongroup perfect codes in $q$ symbols”, Math. Scand., 25 (1969), 149–158 | MR | Zbl

[16] Malyugin S. A., “Perfect codes with trivial automorphism group”, Proc. II Int. Workshop “Optimal codes and related topics” (Sozopol, Bulgaria, June 9–15, 1998), Institute of Mathematics and Informatics, Sofia, 1998, 163–167 | MR

[17] Phelps K. T., “Every finite group is the automorphism group of some perfect code”, J. Comb. Theory Ser. A, 43 (1986), 45–51 | DOI | MR | Zbl

[18] Phelps K. T., Rifà J., Villanueva M., “Kernels and $p$-kernels of $p^r$-ary 1-perfect codes”, Des. Codes Cryptography, 37:2 (2005), 243–261 | DOI | MR | Zbl

[19] Schönheim J., “On linear and nonlinear single-error-correcting $q$-ary perfect codes”, Informatics and Control, 12 (1968), 23–26 | DOI | MR | Zbl

[20] Shapiro G. S., Slotnik D. L., “On the mathematical theory of error correcting codes”, IBM J. Res. Dev., 3:1 (1959), 25–34 | MR | Zbl

[21] Solov'eva F. I., On perfect codes and related topics, $\text{Com}^2$MaC Lect. Note Series, 13, Pohang Univ. of Science and Technology, Pohang, 2004