On the complexity of generalized contact circuits
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 78-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalizations of the concepts of a contact circuit and a parallel-serial contact circuit in the case when the variables assigned to contacts can accept not two as in a Boolean case, but a greater number of values. The conductivity of contacts as well as in a Boolean case remains two-valued (a contact either will close, or will break). We have obtained upper and lower bounds on the complexity of such circuits computing a function $f\colon\{0,1,\dots,q-1\}^n\to\{0,1\}$ which accepts the value 1 at a vector $(\delta_1,\dots,\delta_n)\in\{0,1,\dots,q-1\}^n$ if $\delta_1+\dots+\delta_n\neq0\pmod q$. Bibl. 9.
Keywords: Boolean function, complexity of circuits.
Mots-clés : contact circuit
@article{DA_2009_16_5_a7,
     author = {K. L. Rychkov},
     title = {On the complexity of generalized contact circuits},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - On the complexity of generalized contact circuits
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 78
EP  - 87
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/
LA  - ru
ID  - DA_2009_16_5_a7
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T On the complexity of generalized contact circuits
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 78-87
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/
%G ru
%F DA_2009_16_5_a7
K. L. Rychkov. On the complexity of generalized contact circuits. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 78-87. http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/

[1] Avgustinovich S. V., “Ob odnom podkhode k polucheniyu nizhnikh otsenok slozhnosti dlya bulevykh funktsii”, Diskret. analiz, 35, In-t matematiki, Novosibirsk, 1980, 3–8 | MR

[2] Nigmatulin R. G., Slozhnost bulevykh funktsii, Nauka, M., 1991, 240 pp. | MR

[3] Rychkov K. L., “Modifikatsiya metoda V. M. Khrapchenko i primenenie eë k otsenkam slozhnosti $\Pi$-skhem dlya kodovykh funktsii”, Diskret. analiz, 42, In-t matematiki, Novosibirsk, 1985, 91–98 | MR

[4] Rychkov K. L., “O nizhnikh otsenkakh slozhnosti parallelno-posledovatelnykh kontaktnykh skhem, realizuyuschikh lineinye bulevy funktsii”, Sib. zhurn. issled. operatsii, 1:4 (1994), 33–52 | MR | Zbl

[5] Khrapchenko V. M., “O slozhnosti realizatsii lineinoi funktsii v klasse $\Pi$-skhem”, Mat. zametki, 9:1 (1971), 35–40 | Zbl

[6] Khrapchenko V. M., “Ob odnom metode polucheniya nizhnikh otsenok slozhnosti $\Pi$-skhem”, Mat. zametki, 10:1 (1971), 83–92 | MR | Zbl

[7] Yablonskii S. V., “Realizatsiya lineinoi funktsii v klasse $\Pi$-skhem”, Dokl. AN SSSR, 94:5 (1954), 805–806 | MR

[8] Cardot C., “Quelques résultats sur l$'$application de l'algèbre de Boole à la synthèse des circuits à relais”, Ann. Telecomm., 7:2 (1952), 75–84 | MR

[9] Hansel G., “Nombre minimal de contacts de fermeture nécessaires pour réaliser une fonction booléenne symétrique de $n$ variables”, C. R. Acad. Sci. Paris, 258:25, Gr. 1 (1964), 6037–6040 | MR | Zbl