On the complexity of generalized contact circuits
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 78-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalizations of the concepts of a contact circuit and a parallel-serial contact circuit in the case when the variables assigned to contacts can accept not two as in a Boolean case, but a greater number of values. The conductivity of contacts as well as in a Boolean case remains two-valued (a contact either will close, or will break). We have obtained upper and lower bounds on the complexity of such circuits computing a function $f\colon\{0,1,\dots,q-1\}^n\to\{0,1\}$ which accepts the value 1 at a vector $(\delta_1,\dots,\delta_n)\in\{0,1,\dots,q-1\}^n$ if $\delta_1+\dots+\delta_n\neq0\pmod q$. Bibl. 9.
Keywords: Boolean function, complexity of circuits.
Mots-clés : contact circuit
@article{DA_2009_16_5_a7,
     author = {K. L. Rychkov},
     title = {On the complexity of generalized contact circuits},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - On the complexity of generalized contact circuits
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 78
EP  - 87
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/
LA  - ru
ID  - DA_2009_16_5_a7
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T On the complexity of generalized contact circuits
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 78-87
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/
%G ru
%F DA_2009_16_5_a7
K. L. Rychkov. On the complexity of generalized contact circuits. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 78-87. http://geodesic.mathdoc.fr/item/DA_2009_16_5_a7/