On nonexistence of some perfect 2-colorings of Johnson graphs
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 52-68

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect coloring in $m$ colors of a graph $G$ with matrix $A=\{a_{ij}\}_{i,j=1,\dots,m}$ is a coloring of vertex set of $G$ in the set of colors $\{1,\dots,m\}$ such that the number of vertices of color $j$ adjacent to a fixed vertex of color $i$ does not depend on choice of the last vertex and equals $a_{ij}$. In this paper we obtain a low bound on parameter $a_{ij}$, $i\neq j$, of a perfect coloring of a Johnson graph in two colors. Also we show that some perfect colorings of Johnson graph in two colors do not exist. Bibl. 13.
Keywords: perfect coloring, completely regular code, Johnson scheme.
@article{DA_2009_16_5_a5,
     author = {I. Yu. Mogilnykh},
     title = {On nonexistence of some perfect 2-colorings of {Johnson} graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_5_a5/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
TI  - On nonexistence of some perfect 2-colorings of Johnson graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 52
EP  - 68
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_5_a5/
LA  - ru
ID  - DA_2009_16_5_a5
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%T On nonexistence of some perfect 2-colorings of Johnson graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 52-68
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_5_a5/
%G ru
%F DA_2009_16_5_a5
I. Yu. Mogilnykh. On nonexistence of some perfect 2-colorings of Johnson graphs. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 52-68. http://geodesic.mathdoc.fr/item/DA_2009_16_5_a5/