Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_5_a4, author = {D. S. Malyshev}, title = {Continued sets of boundary classes of graphs for colorability problems}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {41--51}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_5_a4/} }
D. S. Malyshev. Continued sets of boundary classes of graphs for colorability problems. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 5, pp. 41-51. http://geodesic.mathdoc.fr/item/DA_2009_16_5_a4/
[1] Alekseev V. E., Malyshev D. S., “Kriterii granichnosti i ego primeneniya”, Diskret. analiz i issled. operatsii, 15:6 (2008), 3–10 | MR
[2] Malyshev D. S., “O beskonechnosti mnozhestva granichnykh klassov v zadache o rebernoi 3-raskraske”, Diskret. analiz i issled. operatsii, 16:1 (2009), 37–43 | MR
[3] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Appl. Math., 132 (2004), 17–26 | DOI | MR
[4] Alekseev V. E., Korobitsyn D. V., Lozin V. V., “Boundary classes of graphs for the dominating set problem”, Discrete Math., 285 (2004), 1–6 | DOI | MR | Zbl
[5] Alekseev V. E., Boliac R., Korobitsyn D. V., Lozin V. V., “NP-hard graph problems and boundary classes of graphs”, Theoret. Comput. Sci., 389 (2007), 219–236 | DOI | MR | Zbl
[6] Bodlaender H. L., “Dynamic programming on graphs with bounded treewidth”, Automata, languages and programming, Proc. (Tampere, 1988), Lect. Notes in Comput. Sci., 317, Springer–Verl., Berlin, 1988, 105–118 | MR
[7] Holyer I., “The NP-completeness of edge-coloring”, SIAM J. Comput., 10:4 (1981), 718–720 | DOI | MR | Zbl
[8] Kochol M., Lozin V., Randerath B., “The 3-colorability problem on graphs with maximum degree four”, SIAM J. Comput., 32:5 (2003), 1128–1139 | DOI | MR | Zbl
[9] Lozin V. V., Rautenbach D., “On the band-, tree- and clique-width of graphs with bounded vertex degree”, Discrete Math., 18 (2004), 195–206 | DOI | MR | Zbl