Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_4_a0, author = {A. A. Ageev and A. V. Pyatkin}, title = {A 2-approximation algorithm for the metric 2-peripatetic salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--20}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_4_a0/} }
TY - JOUR AU - A. A. Ageev AU - A. V. Pyatkin TI - A 2-approximation algorithm for the metric 2-peripatetic salesman problem JO - Diskretnyj analiz i issledovanie operacij PY - 2009 SP - 3 EP - 20 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2009_16_4_a0/ LA - ru ID - DA_2009_16_4_a0 ER -
A. A. Ageev; A. V. Pyatkin. A 2-approximation algorithm for the metric 2-peripatetic salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/DA_2009_16_4_a0/
[1] Ageev A. A., Baburin A. E., Gimadi E. Kh., “Polinomialnyi algoritm s otsenkoi tochnosti 3/4 dlya otyskaniya dvukh neperesekayuschikhsya gamiltonovykh tsiklov maksimalnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 1, 13:2 (2006), 11–20 | MR
[2] Baburin A. E., Gimadi E. Kh., Korkishko N. M., “Priblizhennye algoritmy dlya nakhozhdeniya dvukh reberno neperesekayuschikhsya gamiltonovykh tsiklov minimalnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 2, 11:1 (2004), 11–25 | MR | Zbl
[3] Serdyukov A. I., “Nekotorye ekstremalnye obkhody v grafakh”, Upravlyaemye sistemy, 17, 1978, 76–79 | MR | Zbl
[4] Christofides N., Worst-case analysis of a new heuristic for the traveling salesman problem, Technical Report CS–93–13, Carnegie–Mellon Univ., Pittsburgh, 1976, 10 pp.
[5] De Brey M. J. D., Volgenant A., “Well-solved cases of the 2-peripatetic salesman problem”, Optimization, 39:3 (1997), 275–293 | DOI | MR | Zbl
[6] Duchenne E., Laporte G., Semet F., “Branch-and-cut algorithms for the undirected $m$-peripatetic salesman problem”, Europ. J. Oper. Res., 162:3 (2005), 700–712 | DOI | MR | Zbl
[7] De Kort J. B. J. M., “Lower bounds for symmetric $K$-peripatetic salesman problems”, Optimization, 22:1 (1991), 113–122 | DOI | MR | Zbl
[8] De Kort J. B. J. M., “Upper bounds for the symmetric 2-peripatetic salesman problem”, Optimization, 23:4 (1992), 357–367 | DOI | MR | Zbl
[9] De Kort J. B. J. M., “A branch and bound algorithm for symmetric 2-peripatetic salesman problems”, Europ. J. Oper. Res., 70 (1993), 229–243 | DOI | Zbl
[10] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, Proc. NATO Advanced Study Inst. (Versailles, 1974), Reidel Press, Dordrecht, 1975, 173–178 | MR
[11] Roskind J., Tarjan R. E., “A note on finding minimum-cost edge-disjoint spanning trees”, Math. Oper. Res., 10:4 (1985), 701–708 | DOI | MR | Zbl
[12] Wolfter C. R., Cordone R., “A heuristic approach to the overnight security service problem”, Computers Oper. Res., 30 (2003), 1269–1287 | DOI