On properties of optimal schedules in the flow shop problem with preemption and an arbitrary regular criterion
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 3, pp. 74-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of optimal solutions of the NP-hard flow shop scheduling problem with preemption and an arbitrary regular objective function. It is shown that for any instance of the problem its optimal solution can be found by choosing appropriate job priority orders on each machine. The number of preemptions in such schedule is estimated from above. It is also shown that the length of the optimal schedule (for a specified regular criterion) is always equal to the total length of operations from a certain subset. The results of the paper significantly extend previously known results established for the flow shop problem with the minimum makespan objective. Il. 5, bibl. 10.
Keywords: theory of scheduling, preemption, optimal schedule, regular criterion.
@article{DA_2009_16_3_a4,
     author = {D. A. Chemisova},
     title = {On properties of optimal schedules in the flow shop problem with preemption and an arbitrary regular criterion},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--98},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_3_a4/}
}
TY  - JOUR
AU  - D. A. Chemisova
TI  - On properties of optimal schedules in the flow shop problem with preemption and an arbitrary regular criterion
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 74
EP  - 98
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_3_a4/
LA  - ru
ID  - DA_2009_16_3_a4
ER  - 
%0 Journal Article
%A D. A. Chemisova
%T On properties of optimal schedules in the flow shop problem with preemption and an arbitrary regular criterion
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 74-98
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_3_a4/
%G ru
%F DA_2009_16_3_a4
D. A. Chemisova. On properties of optimal schedules in the flow shop problem with preemption and an arbitrary regular criterion. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 3, pp. 74-98. http://geodesic.mathdoc.fr/item/DA_2009_16_3_a4/

[1] Baptist F., Karle Zh., Keran M., Kononov A. V., Sviridenko M., Sevastyanov S. V., “Strukturnye svoistva optimalnykh raspisanii s preryvaniyami operatsii”, Diskret. analiz i issled. operatsii, 16:1 (2009), 3–36

[2] Sevastyanov S. V., Chemisova D. A., Chernykh I. D., “O nekotorykh svoistvakh optimalnykh raspisanii v zadache Dzhonsona s preryvaniyami”, Diskret. analiz i issled. operatsii. Ser. 1, 13:3 (2006), 83–102 | MR

[3] Tanaev V. S., Sotskov Yu. N., Strusevich V. A., Teoriya raspisanii. Mnogostadiinye sistemy, Nauka, M., 1989, 328 pp. | MR | Zbl

[4] Chen B., Potts C. N., Woeginger G. J., “A review of machine scheduling: complexity, algorithms and approximability”, Handbook of combinatorial optimization, Vol. 3, Kluwer Acad. Publ., Boston, 1998, 21–169 | MR | Zbl

[5] Cho Y., Sahni S., “Preemptive scheduling of independent jobs with release and due times on open, flow and job shops”, Oper. Res., 29 (1981), 511–522 | DOI | MR | Zbl

[6] Du J., Leung J. Y.-T., “Minimizing mean flow time in two-machine open shops and flow shops”, J. Algorithms, 14 (1993), 341–364 | MR

[7] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish time”, J. ACM, 23 (1976), 665–679 | DOI | MR | Zbl

[8] Gonzalez T., Sahni S., “Flowshop and jobshop schedules: complexity and approximation”, Oper. Res., 26:1 (1978), 36–52 | DOI | MR | Zbl

[9] Johnson S. M., “Optimal two- and three-stage production schedules with setup time included”, Naval Research Logistic Quarterly, 1 (1954), 61–68 | DOI

[10] Lawler E. L., Labetoulle J., “On preemptive scheduling on unrelated parallel processors by linear programming”, J. ACM, 25 (1978), 612–619 | DOI | MR | Zbl