Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_3_a2, author = {V. M. Kartak}, title = {The grouping method for the linear relaxation of 1d cutting stock problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {47--62}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_3_a2/} }
V. M. Kartak. The grouping method for the linear relaxation of 1d cutting stock problem. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 3, pp. 47-62. http://geodesic.mathdoc.fr/item/DA_2009_16_3_a2/
[1] Geri M. P., Dzhonson D. S., Vychislitelnye mashiny i trudnorazreshimye zadachi, Mir, M., 1982, 419 pp. | MR
[2] Kantorovich L. V., Zallgaller V. A., Raschet ratsionalnogo raskroya materialov, Lenizdat, L., 1951, 199 pp.
[3] Kartak V. M., “Dostatochnye usloviya nevypolneniya svoistva tselochislennogo okrugleniya dlya zadachi lineinogo raskroya”, Avtomatika i telemekhanika, 2004, no. 4, 55–62 | MR
[4] Mukhacheva E. A., Rubinshtein G. Sh., Matematicheskoe programmirovanie, Nauka, Novosibirsk, 1987, 272 pp. | MR | Zbl
[5] Applegate D. L., Buriol L. S., Dillard B. L., Johnson D. S., Shor P. W., “The cutting-stock approach to bin packing: theory and experiments”, Proc. the fifth workshop on algorithm engineering and experimentation, SIAM, 2003, 1–15
[6] Belov G., Scheithauer G., “A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting”, Europ. J. Oper. Research, 171:1 (2006), 85–106 | DOI | MR | Zbl
[7] Claudio A., Valerio de Carvalho J. M., “A stabilized branch-and-price-and-cut algorithm for the multiple length cutting stock problem”, Comput. Oper. Research, 35:4 (2008), 1315–1328 | DOI | Zbl
[8] Dyckhoff H., “A typology of cutting and packing problems”, Europ. J. Oper. Research, 44:2 (1990), 145–159 | DOI | MR | Zbl
[9] Fernandez de la Vega W., Lueker G. S., “Bin packing can be solved within $1+e$ in linear time”, Combinatorica, 1981, no. 1, 349–355 | DOI | MR | Zbl
[10] Gilmore P., Gomory R., “A linear programming approach to the cutting-stock problem”, Oper. Research, 1961, no. 9, 849–859 | DOI | MR | Zbl
[11] Marcotte O., “An instance of the cutting stock problem for which the rounding property does not hold”, Oper. Research Letters, 4:5 (1986), 239–243 | DOI | MR | Zbl
[12] Mukhacheva E., Belov G., Kartak V., Mukhacheva A., “Linear one-dimensional cutting-packing problems: numerical experiments with the sequential value correction method (SVC) and a modified branch-and-bound method (MBB)”, Pesquisa Operacional, 20:2 (2000), 153–168 | DOI
[13] Peeters M., Degraeve Z., “Optimal integer solutions to industrial cutting-stock problems: part 2. Benchmark Results”, Inform. J. Computing, 15:1 (2003), 58–81 | DOI | MR
[14] Schwerin P., Wascher G., “The bin-packing problem: A problem generator and some numerical experiments with FFD packing and MTP”, Intern. Transactions Oper. Research, 4:5/6 (1997), 377–389 | DOI | Zbl
[15] Vanderbeck F., “Computational study of a column generation algorithm for bin packing and cutting stock problems”, Math. Programming, 86:3 (1999), 565–594 | DOI | MR | Zbl