On nonsystematic perfect codes over finite fields
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 44-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonsystematic perfect $q$-ary codes over a field $F_q$ of length $n=(q^m-1)/(q-1)$ are constructed for $m\ge4$ and $q\ge2$, and also for $n=3$ and non prime $q$. It is shown that, for $q\ne3,5$, such codes can be constructed by switchings seven disjoint components and, for $q=3,5$, by switchings eight disjoint components of the Hamming code $H_q^n$. Bibl. 12.
Keywords: perfect code, Hamming code, Galois field, nonsystematic code, projective geometry, component.
@article{DA_2009_16_1_a2,
     author = {S. A. Malyugin},
     title = {On nonsystematic perfect codes over finite fields},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {44--63},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - On nonsystematic perfect codes over finite fields
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 44
EP  - 63
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/
LA  - ru
ID  - DA_2009_16_1_a2
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T On nonsystematic perfect codes over finite fields
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 44-63
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/
%G ru
%F DA_2009_16_1_a2
S. A. Malyugin. On nonsystematic perfect codes over finite fields. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 44-63. http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/

[1] Avgustinovich S. V., Soloveva F. I., “O nesistematicheskikh sovershennykh dvoichnykh kodakh”, Problemy peredachi informatsii, 32:3 (1996), 47–50 | MR | Zbl

[2] Los A. V., “Postroenie sovershennykh $q$-znachnykh kodov posledovatelnymi sdvigami $\widetilde\alpha$-komponent”, Problemy peredachi informatsii, 40:1 (2004), 40–47 | MR | Zbl

[3] Los A. V., “Postroenie sovershennykh $q$-znachnykh kodov svitchingami prostykh komponent”, Problemy peredachi informatsii, 42:1 (2006), 34–42 | MR | Zbl

[4] Malyugin S. A., “O kriterii nesistematichnosti sovershennykh dvoichnykh kodov”, Dokl. RAN, 375:1 (2000), 13–16 | MR | Zbl

[5] Malyugin S. A., “Nesistematicheskie sovershennye dvoichnye kody”, Diskret. analiz i issled. operatsii. Ser. 1, 8:1 (2001), 55–76 | MR | Zbl

[6] Romanov A. M., “O nesistematicheskikh sovershennykh kodakh dliny 15”, Diskret. analiz i issled. operatsii. Ser. 1, 4:4 (1997), 75–78 | MR | Zbl

[7] Romanov A. M., “O razbieniyakh $q$-znachnykh kodov Khemminga na neperesekayuschiesya komponenty”, Diskret. analiz i issled. operatsii. Ser. 1, 11:3 (2004), 80–87 | MR | Zbl

[8] Los' A., “Construction of perfect $q$-ary codes”, Proc. of Ninth Int. Workshop “Algebraic and combinatorial coding theory” (Kranevo, Bulgaria, June 19–25, 2004), 272–276

[9] Phelps K. T., Le Van M. J., “Non-systematic perfect codes”, SIAM J. Discrete Math., 12:1 (1999), 27–34 | DOI | MR | Zbl

[10] Phelps K. T., Villanueva M., “Ranks of $q$-ary 1-perfect codes”, Designs, Codes and Cryptography, 27:1–2 (2002), 139–144 | DOI | MR | Zbl

[11] Phelps K. T., Rifá J., Villanueva M., “Kernels of $q$-ary 1-perfect codes”, Proc. of Ninth Int. Workshop on Coding and Cryptography (Versailles, France, March 24–28, 2003), 375–381

[12] Schönheim J., “On linear and nonlinear single-error-correcting $q$-ary perfect codes”, Information and Control, 12:1 (1968), 23–26 | DOI | MR | Zbl