On nonsystematic perfect codes over finite fields
Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 44-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonsystematic perfect $q$-ary codes over a field $F_q$ of length $n=(q^m-1)/(q-1)$ are constructed for $m\ge4$ and $q\ge2$, and also for $n=3$ and non prime $q$. It is shown that, for $q\ne3,5$, such codes can be constructed by switchings seven disjoint components and, for $q=3,5$, by switchings eight disjoint components of the Hamming code $H_q^n$. Bibl. 12.
Keywords: perfect code, Hamming code, Galois field, nonsystematic code, projective geometry, component.
@article{DA_2009_16_1_a2,
     author = {S. A. Malyugin},
     title = {On nonsystematic perfect codes over finite fields},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {44--63},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - On nonsystematic perfect codes over finite fields
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2009
SP  - 44
EP  - 63
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/
LA  - ru
ID  - DA_2009_16_1_a2
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T On nonsystematic perfect codes over finite fields
%J Diskretnyj analiz i issledovanie operacij
%D 2009
%P 44-63
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/
%G ru
%F DA_2009_16_1_a2
S. A. Malyugin. On nonsystematic perfect codes over finite fields. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 44-63. http://geodesic.mathdoc.fr/item/DA_2009_16_1_a2/