Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2009_16_1_a0, author = {Ph. Baptiste and J. Carlier and A. V. Kononov and M. Queyranne and S. V. Sevast'yanov and M. Sviridenko}, title = {Structural properties of optimal schedules with preemption}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--36}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2009_16_1_a0/} }
TY - JOUR AU - Ph. Baptiste AU - J. Carlier AU - A. V. Kononov AU - M. Queyranne AU - S. V. Sevast'yanov AU - M. Sviridenko TI - Structural properties of optimal schedules with preemption JO - Diskretnyj analiz i issledovanie operacij PY - 2009 SP - 3 EP - 36 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2009_16_1_a0/ LA - ru ID - DA_2009_16_1_a0 ER -
%0 Journal Article %A Ph. Baptiste %A J. Carlier %A A. V. Kononov %A M. Queyranne %A S. V. Sevast'yanov %A M. Sviridenko %T Structural properties of optimal schedules with preemption %J Diskretnyj analiz i issledovanie operacij %D 2009 %P 3-36 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2009_16_1_a0/ %G ru %F DA_2009_16_1_a0
Ph. Baptiste; J. Carlier; A. V. Kononov; M. Queyranne; S. V. Sevast'yanov; M. Sviridenko. Structural properties of optimal schedules with preemption. Diskretnyj analiz i issledovanie operacij, Tome 16 (2009) no. 1, pp. 3-36. http://geodesic.mathdoc.fr/item/DA_2009_16_1_a0/
[1] Baptiste Ph., Timkovsky V., “On preemption redundancy in scheduling unit processing time jobs on two parallel machines”, Oper. Research Lett., 28 (2001), 205–212 | DOI | MR | Zbl
[2] Brucker P., Heitmann S., Hurink J., “How useful are preemptive schedules?”, Oper. Res. Lett., 31:2 (2003), 129–136 | DOI | MR | Zbl
[3] Du J., Leung J. Y. T., “Minimizing mean flow time in two-machine open shops and flow shops”, J. Algorithms, 14 (1993), 24–44 | DOI | MR | Zbl
[4] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish time”, J. ACM, 23 (1976), 665–679 | DOI | MR | Zbl
[5] Gonzalez T., Sahni S., “Preemptive scheduling of uniform processor systems”, J. ACM, 25 (1978), 92–101 | DOI | MR | Zbl
[6] Labetoulle J., Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., “Preemptive scheduling of uniform machines subject to release dates”, Progress in Combinatorial Optimization, Academic Press, New York, 1984, 245–261 | MR
[7] Lawler E. L., Labetoulle J., “On preemptive scheduling of unrelated parallel processors by linear programming”, J. ACM, 25 (1978), 612–619 | DOI | MR | Zbl
[8] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B., “Sequencing and scheduling: algorithms and complexity”, Logistics of Production and Inventory, Handbooks in Operations Research and Management Science. Vol. 4, North-Holland, Elsevier, Amsterdam, 1993, 445–522
[9] McNaughton R., “Scheduling with deadlines and loss functions”, Management Science, 6 (1959), 1–12 | DOI | MR | Zbl
[10] Sauer Stone M., “Preemptive scheduling”, Algorithms and order (Ottawa, ON, 1987), Kluwer Acad. Publ., Dordrecht, 1989, 307–323 | MR
[11] Sauer N., Stone M., “Rational preemptive scheduling”, Order, 4:2 (1987), 195–206 | DOI | MR | Zbl
[12] Schrijver A., Theory of linear and integer programming, Wiley, Chichester, 1986, 470 pp. | MR | Zbl
[13] Tanaev V. S., Gordon V. S., Shafransky Y. M., Scheduling theory. Single-stage systems, Kluwer Acad. Publ., Dordrecht– Boston–London, 1994, 380 pp. | MR | Zbl