Existence of an infinite word with a Rauzy graph sequence that contains a subsequence of homeomorphs of graphs of the given sequence
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 61-75
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate infinite words on a finite alphabet and prove that for any sequence of strongly connected directed graphs with maximal in and out vertices degrees that are equal to $s$ there exists a uniformly recurrent infinite word on a $s$-letters alphabet with a Rauzy graph sequence that contains a subsequence of homeomorphs of graphs of the given sequence. Bibl. 5.
Keywords:
infinite words, uniform reccurancy, Rauzy graph, de Brain graphs.
@article{DA_2008_15_5_a5,
author = {P. V. Salimov},
title = {Existence of an infinite word with {a~Rauzy} graph sequence that contains a~subsequence of homeomorphs of graphs of the given sequence},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {61--75},
year = {2008},
volume = {15},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a5/}
}
TY - JOUR AU - P. V. Salimov TI - Existence of an infinite word with a Rauzy graph sequence that contains a subsequence of homeomorphs of graphs of the given sequence JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 61 EP - 75 VL - 15 IS - 5 UR - http://geodesic.mathdoc.fr/item/DA_2008_15_5_a5/ LA - ru ID - DA_2008_15_5_a5 ER -
%0 Journal Article %A P. V. Salimov %T Existence of an infinite word with a Rauzy graph sequence that contains a subsequence of homeomorphs of graphs of the given sequence %J Diskretnyj analiz i issledovanie operacij %D 2008 %P 61-75 %V 15 %N 5 %U http://geodesic.mathdoc.fr/item/DA_2008_15_5_a5/ %G ru %F DA_2008_15_5_a5
P. V. Salimov. Existence of an infinite word with a Rauzy graph sequence that contains a subsequence of homeomorphs of graphs of the given sequence. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 61-75. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a5/
[1] Belov A. Ya., Chernyatev A. L., “Slova medlennogo rosta i perekladyvaniya otrezkov”, Uspekhi mat. nauk, 63:1 (2008), 159–160 | MR
[2] Frid A. E., “O grafakh podslov DOL-posledovatelnostei”, Diskret. analiz i issled. operatsii. Ser. 1, 6:4 (1999), 92–103 | MR | Zbl
[3] Aberkane A., “Words whose complexity satisfies $\lim p(n)/n=1$”, Theor. Comput. Sci., 307:1 (2003), 31–46 | DOI | MR | Zbl
[4] Cassaigne J., “Sequences with grouped factors”, Developments in language theory III (DLT' 97), Aristote Univ. Thessaloniki, Thessaloniki, 1998, 211–222
[5] Rauzy G., “Suites à termes dans un alphabet fini”, Seminar on Number Theory (1982–1983), no. 25, Univ. Bordeaux I, Talence, 1983, 16 pp. | MR | Zbl