On one variant of the vectors subset choice problem
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 20-34

Voir la notice de l'article provenant de la source Math-Net.Ru

One variant of the problem of a posteriori (off-line) noise proof search for the unknown repeating vector in the case, when the noise is additive, can be reduced to the “similar” vectors subset choice problem. This problem is proved to be NP-complete. A polynomial approximation algorithm with guaranteed relative error bounds in the case of the fixed dimension of the space is suggested for this problem. Bibl. 13.
Keywords: numerical vector sequence, a posteriori processing, repeating vector, optimal noise proof detecting, complexity, NP-completeness, approximation algorithm.
@article{DA_2008_15_5_a2,
     author = {A. V. Kel'manov and A. V. Pyatkin},
     title = {On one variant of the vectors subset choice problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_5_a2/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - A. V. Pyatkin
TI  - On one variant of the vectors subset choice problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 20
EP  - 34
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_5_a2/
LA  - ru
ID  - DA_2008_15_5_a2
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A A. V. Pyatkin
%T On one variant of the vectors subset choice problem
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 20-34
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_5_a2/
%G ru
%F DA_2008_15_5_a2
A. V. Kel'manov; A. V. Pyatkin. On one variant of the vectors subset choice problem. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 5, pp. 20-34. http://geodesic.mathdoc.fr/item/DA_2008_15_5_a2/