Description of $k$-bent functions in four variables
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple description for the class of 2-bent functions in four variables is given. This class consists of 384 quadratic functions with 12 distinct types of quadratic part. Thus, all $k$-bent functions with at most four variables are classified. Bibl. 11.
Keywords: $k$-bent-functions, $k$-Walsh–Hadamard transform.
@article{DA_2008_15_4_a5,
     author = {N. N. Tokareva},
     title = {Description of $k$-bent functions in four variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - Description of $k$-bent functions in four variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 74
EP  - 83
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/
LA  - ru
ID  - DA_2008_15_4_a5
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T Description of $k$-bent functions in four variables
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 74-83
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/
%G ru
%F DA_2008_15_4_a5
N. N. Tokareva. Description of $k$-bent functions in four variables. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 74-83. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/

[1] arXiv:0710.0198v1[cs.IT] | MR | Zbl

[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 2004, 470 pp. | MR | Zbl

[3] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.

[4] Tokareva N. N., “Bent-funktsii s bolee silnymi svoistvami nelineinosti: $k$-bent-funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 14:4 (2007), 76–102 | MR

[5] Tokareva N. N., “O kvadratichnykh approksimatsiyakh v blochnykh shifrakh”, Probl. peredachi informatsii, 44:3 (2008), 105–127

[6] Agievich S. V., “On the representation of bent-functions by bent-rectangles”, Proc. Fifth Int. Petrozavodsk conf. on probabilistic methods in discrete mathematics (Petrozavodsk, Russia, June 1–6, 2000), VSP, Boston, 2000, 121–135; arXiv:math/0502087v1[math.CO]

[7] Carlet C., “Boolean Functions for Cryptography and Error Correcting Codes”, chapter of the monograph, Boolean methods and models, eds. P. Hammer, Y. Crama, Cambridge Univ. Press (to appear)

[8] Krotov D. S., “$\mathbb Z_4$-linear Hadamard and extended perfect codes”, Proc. of the Int. Workshop on Coding and Cryptography (Paris, France, January 8–12, 2001), Elsevier, Amsterdam, 2001, 329–334 | MR

[9] Meng Q., Yang M. C., Zhang H., A novel algorithm enumerating bent functions, , 2004/274 http://eprint.iacr.org

[10] Preneel B., Analysis and design of cryptographic hash functions, Ph. D. thesis, Katholieke Universiteit Leuven, 3001 Leuven, Belgium, 1993, 338 pp.

[11] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl