Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2008_15_4_a5, author = {N. N. Tokareva}, title = {Description of $k$-bent functions in four variables}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {74--83}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/} }
N. N. Tokareva. Description of $k$-bent functions in four variables. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 74-83. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/
[1] arXiv:0710.0198v1[cs.IT] | MR | Zbl
[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, M., 2004, 470 pp. | MR | Zbl
[3] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979, 744 pp.
[4] Tokareva N. N., “Bent-funktsii s bolee silnymi svoistvami nelineinosti: $k$-bent-funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 14:4 (2007), 76–102 | MR
[5] Tokareva N. N., “O kvadratichnykh approksimatsiyakh v blochnykh shifrakh”, Probl. peredachi informatsii, 44:3 (2008), 105–127
[6] Agievich S. V., “On the representation of bent-functions by bent-rectangles”, Proc. Fifth Int. Petrozavodsk conf. on probabilistic methods in discrete mathematics (Petrozavodsk, Russia, June 1–6, 2000), VSP, Boston, 2000, 121–135; arXiv:math/0502087v1[math.CO]
[7] Carlet C., “Boolean Functions for Cryptography and Error Correcting Codes”, chapter of the monograph, Boolean methods and models, eds. P. Hammer, Y. Crama, Cambridge Univ. Press (to appear)
[8] Krotov D. S., “$\mathbb Z_4$-linear Hadamard and extended perfect codes”, Proc. of the Int. Workshop on Coding and Cryptography (Paris, France, January 8–12, 2001), Elsevier, Amsterdam, 2001, 329–334 | MR
[9] Meng Q., Yang M. C., Zhang H., A novel algorithm enumerating bent functions, , 2004/274 http://eprint.iacr.org
[10] Preneel B., Analysis and design of cryptographic hash functions, Ph. D. thesis, Katholieke Universiteit Leuven, 3001 Leuven, Belgium, 1993, 338 pp.
[11] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl