Description of $k$-bent functions in four variables
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 74-83

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple description for the class of 2-bent functions in four variables is given. This class consists of 384 quadratic functions with 12 distinct types of quadratic part. Thus, all $k$-bent functions with at most four variables are classified. Bibl. 11.
Keywords: $k$-bent-functions, $k$-Walsh–Hadamard transform.
@article{DA_2008_15_4_a5,
     author = {N. N. Tokareva},
     title = {Description of $k$-bent functions in four variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - Description of $k$-bent functions in four variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 74
EP  - 83
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/
LA  - ru
ID  - DA_2008_15_4_a5
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T Description of $k$-bent functions in four variables
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 74-83
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/
%G ru
%F DA_2008_15_4_a5
N. N. Tokareva. Description of $k$-bent functions in four variables. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 74-83. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a5/