Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 44-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of carefully synchronizing words for partial finite automata (PFA) is introduced. The careful synchronization of PFA is a natural generalization of the synchronization of the deterministic finite automata. Some lower bounds for the length of the shortest carefully synchronizing words are found for an automaton with a given number of states. It is proven that the maximal length of the shortest reset words for two- and three-letter automata grows faster than any polynomial in the number of states. Tabl. 1, illustr. 3, bibl. 11.
Mots-clés : automata
Keywords: synchronization.
@article{DA_2008_15_4_a3,
     author = {P. V. Martyugin},
     title = {Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a3/}
}
TY  - JOUR
AU  - P. V. Martyugin
TI  - Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 44
EP  - 56
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_4_a3/
LA  - ru
ID  - DA_2008_15_4_a3
ER  - 
%0 Journal Article
%A P. V. Martyugin
%T Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 44-56
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_4_a3/
%G ru
%F DA_2008_15_4_a3
P. V. Martyugin. Lower bounds for the length of the shortest carefully synchronizing words for two- and three-letter partial automata. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 44-56. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a3/