About $f$-vectors of pyramidal triangulations of point configurations
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 74-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A triangulation of a point configuration is called pyramidal if all its simplexes have a common vertex. Some inequalities for the components of the $f$-vectors of pyramidal triangulations were established. Moreover, for each $d>3$ there was constructed a $d$-dimensional polytope with its triangulation $T(d)$ such that the $f$-vector of $T(d)$ is not realizable as the $f$-vector of a pyramidal triangulation. Bibl. 13.
Mots-clés : pyramidal triangulation, triangulation, point configuration.
@article{DA_2008_15_3_a7,
     author = {V. N. Shevchenko and D. V. Gruzdev},
     title = {About $f$-vectors of pyramidal triangulations of point configurations},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--90},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/}
}
TY  - JOUR
AU  - V. N. Shevchenko
AU  - D. V. Gruzdev
TI  - About $f$-vectors of pyramidal triangulations of point configurations
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 74
EP  - 90
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/
LA  - ru
ID  - DA_2008_15_3_a7
ER  - 
%0 Journal Article
%A V. N. Shevchenko
%A D. V. Gruzdev
%T About $f$-vectors of pyramidal triangulations of point configurations
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 74-90
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/
%G ru
%F DA_2008_15_3_a7
V. N. Shevchenko; D. V. Gruzdev. About $f$-vectors of pyramidal triangulations of point configurations. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 74-90. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/

[1] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988, 240 pp. | MR

[2] Motskin T. S., Raifa Kh., Tompson Dzh. L., Troll R. M., “Metod dvoinogo opisaniya”, Matrichnye igry, Fizmatgiz, M., 1961, 81–109

[3] Pontryagin L. S., Osnovy kombinatornoi topologii, Nauka, M., 1986, 118 pp. | MR | Zbl

[4] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989, 478 pp. | MR | Zbl

[5] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968, 488 pp. | MR | Zbl

[6] Shevchenko V. N., Gruzdev D. V., “Ob $f$-vektorakh piramidalnykh triangulyatsii tochechnykh konfiguratsii”, Rossiiskaya konferentsiya «Diskretnaya optimizatsiya i issledovanie operatsii», Materialy konf. (Vladivostok, 7–14 sentyabrya 2007), Izd-vo In-ta matematiki, Novosibirsk, 2007, 138; math.nsc.ru/conference/door07/book1.html/

[7] Shevchenko V. N., Gruzdev D. V., “Modifikatsiya algoritma Fure–Motskina dlya postroeniya triangulyatsii”, Diskret. analiz i issled. operatsii. Ser. 2, 10:1 (2003), 53–64 | MR | Zbl

[8] Shevchenko V. N., “O razbienii vypuklogo politopa na simpleksy bez novykh vershin”, Izv. vuzov. Matematika, 1997, no. 12, 89–99 | MR

[9] Burger E., “Über homogene lineare Ungleichungssysteme”, Zeitschrift Angewandte Math. und Mech., 36 (1956), 135–139 | DOI | MR | Zbl

[10] Grünbaum B., Convex polytopes, Wiley, New York, 1967, 456 pp. | MR | Zbl

[11] Kleinschmidt P., Smilansky Z., “New results for simplicial spherical polytopes”, Discrete and computation geometry, DIMACS Series in discrete mathematics and theoretical computer science, 6, Amer. Math. Soc., Providence, RI, 1991, 187–197 | MR

[12] Lee C. W., “Regular triangulations of convex polytopes”, Applied geometry and discrete mathematics, DIMACS Series in discrete mathematics and theoretical computer science, 4, Amer. Math. Soc., Providence, RI, 1991, 443–456 | MR

[13] Ziegler G. I., Lectures on polytopes, Springer–Verl., New York, 1995, 370 pp. | MR | Zbl