About $f$-vectors of pyramidal triangulations of point configurations
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 74-90
Voir la notice de l'article provenant de la source Math-Net.Ru
A triangulation of a point configuration is called pyramidal if all its simplexes have a common vertex. Some inequalities for the components of the $f$-vectors of pyramidal triangulations were established. Moreover, for each
$d>3$ there was constructed a $d$-dimensional polytope with its triangulation $T(d)$ such that the $f$-vector of $T(d)$ is not realizable as the $f$-vector of a pyramidal triangulation. Bibl. 13.
Mots-clés :
pyramidal triangulation, triangulation, point configuration.
@article{DA_2008_15_3_a7,
author = {V. N. Shevchenko and D. V. Gruzdev},
title = {About $f$-vectors of pyramidal triangulations of point configurations},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {74--90},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/}
}
TY - JOUR AU - V. N. Shevchenko AU - D. V. Gruzdev TI - About $f$-vectors of pyramidal triangulations of point configurations JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 74 EP - 90 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/ LA - ru ID - DA_2008_15_3_a7 ER -
V. N. Shevchenko; D. V. Gruzdev. About $f$-vectors of pyramidal triangulations of point configurations. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 74-90. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a7/