Ranking small regular polygons by area and by perimeter
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 65-73

Voir la notice de l'article provenant de la source Math-Net.Ru

From the pentagon onwards, for each odd number $n$ the area of the regular convex polygon with $n$ sides and unit diameter is greater than the area of the similar polygon with $n+1$ sides. Moreover, from the heptagon onwards, the difference in areas decreases when $n$ increases. Similar properties hold for the perimeter. A new proof of the Reinhardt's result is obtained. Tabl. 1, illustr. 1, bibl. 18.
Mots-clés : polygon
Keywords: diameter, area, perimeter.
@article{DA_2008_15_3_a6,
     author = {Ch. Audet and P. Hansen and F. Messine},
     title = {Ranking small regular polygons by area and by perimeter},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a6/}
}
TY  - JOUR
AU  - Ch. Audet
AU  - P. Hansen
AU  - F. Messine
TI  - Ranking small regular polygons by area and by perimeter
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 65
EP  - 73
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a6/
LA  - ru
ID  - DA_2008_15_3_a6
ER  - 
%0 Journal Article
%A Ch. Audet
%A P. Hansen
%A F. Messine
%T Ranking small regular polygons by area and by perimeter
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 65-73
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_3_a6/
%G ru
%F DA_2008_15_3_a6
Ch. Audet; P. Hansen; F. Messine. Ranking small regular polygons by area and by perimeter. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 65-73. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a6/