On mobile sets in the binary hypercube
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

If two distance-3 codes have the same neighborhood, then each of them is called a mobile set. In the $(4k+3)$-dimensional binary hypercube there exists a mobile set of cardinality $2\cdot6^k$ that cannot be split into mobile sets of smaller cardinalities or represented as a natural extension of a mobile set of smaller dimension. Bibl. 10.
Keywords: 1-perfect code, Bollean cube, $i$-component.
Mots-clés : mobile set
@article{DA_2008_15_3_a1,
     author = {Yu. L. Vasil'ev and S. V. Avgustinovich and D. S. Krotov},
     title = {On mobile sets in the binary hypercube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a1/}
}
TY  - JOUR
AU  - Yu. L. Vasil'ev
AU  - S. V. Avgustinovich
AU  - D. S. Krotov
TI  - On mobile sets in the binary hypercube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 11
EP  - 21
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a1/
LA  - ru
ID  - DA_2008_15_3_a1
ER  - 
%0 Journal Article
%A Yu. L. Vasil'ev
%A S. V. Avgustinovich
%A D. S. Krotov
%T On mobile sets in the binary hypercube
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 11-21
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_3_a1/
%G ru
%F DA_2008_15_3_a1
Yu. L. Vasil'ev; S. V. Avgustinovich; D. S. Krotov. On mobile sets in the binary hypercube. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 11-21. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a1/

[1] Vasilev Yu. L., Soloveva F. I., “Kodoobrazuyuschie faktorizatsii $n$-mernogo edinichnogo kuba i sovershennykh dvoichnykh kodov”, Problemy peredachi informatsii, 33:1 (1997), 64–74 | MR | Zbl

[2] Zinovev V. A., Zinovev D. V., “Dvoichnye rasshirennye sovershennye kody dliny 16 ranga 14”, Problemy peredachi informatsii, 42:2 (2006), 63–80 | MR

[3] Zinovev V. A., Lobstein A., “Ob obobschënnykh kaskadnykh konstruktsiyakh sovershennykh dvoichnykh nelineinykh kodov”, Problemy peredachi informatsii, 36:4 (2000), 59–73 | MR | Zbl

[4] Malyugin S. A., “O perechislenii neekvivalentnykh sovershennykh dvoichnykh kodov dliny 15 i ranga 15”, Diskret. analiz i issled. operatsii. Ser. 1, 13:1 (2006), 77–98 | MR

[5] Potapov V. V., “O nizhnei otsenke chisla tranzitivnykh sovershennykh kodov”, Diskret. analiz i issled. operatsii. Ser. 1, 13:4 (2006), 49–59 | MR

[6] Soloveva F. I., “O faktorizatsii kodoobrazuyuschikh d.n.f.”, Metody diskretnogo analiza v issledovanii funktsionalnykh sistem, Sb. nauchn. tr., 47, In-t matematiki SO AN SSSR, Novosibirsk, 1988, 66–88 | MR

[7] Soloveva F. I., “O postroenii tranzitivnykh kodov”, Problemy peredachi informatsii, 41:3 (2005), 23–31 | MR

[8] Fon-Der-Flaass D. G., “Sovershennye 2-raskraski giperkuba”, Sib. mat. zhurn., 48:4 (2007), 923–930 | MR

[9] Solov'eva F. I., “Structure of $i$-components of perfect binary codes”, Discrete Appl. Math., 111:1–2 (2001), 189–197 | DOI | MR

[10] Vasil'eva A. Yu., “A representation of perfect binary codes”, Proc. seventh international workshop on algebraic and combinatorial coding theory (Bansko, Bulgaria: 2000, June), 311–315