О~сводимости задач двухуровневого программирования к~задачам векторной оптимизации
Diskretnyj analiz i issledovanie operacij, Tome 14 (2007) no. 1, pp. 72-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

Reductions are studied of the bilevel programming problems to vector (multicriteria) optimization problems. A general framework is proposed for constructing these reductions. Some particular cases of bilevel problems are considered.
@article{DA_2007_14_1_a4,
     author = {D. S. Ivanenko and A. V. Plyasunov},
     title = {{\CYRO}~{\cyrs}{\cyrv}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch} {\cyrd}{\cyrv}{\cyru}{\cyrh}{\cyru}{\cyrr}{\cyro}{\cyrv}{\cyrn}{\cyre}{\cyrv}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyrr}{\cyro}{\cyrg}{\cyrr}{\cyra}{\cyrm}{\cyrm}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {\cyrk}~{\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra}{\cyrm} {\cyrv}{\cyre}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyrn}{\cyro}{\cyrishrt} {\cyro}{\cyrp}{\cyrt}{\cyri}{\cyrm}{\cyri}{\cyrz}{\cyra}{\cyrc}{\cyri}{\cyri}},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {72--99},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2007_14_1_a4/}
}
TY  - JOUR
AU  - D. S. Ivanenko
AU  - A. V. Plyasunov
TI  - О~сводимости задач двухуровневого программирования к~задачам векторной оптимизации
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2007
SP  - 72
EP  - 99
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2007_14_1_a4/
LA  - ru
ID  - DA_2007_14_1_a4
ER  - 
%0 Journal Article
%A D. S. Ivanenko
%A A. V. Plyasunov
%T О~сводимости задач двухуровневого программирования к~задачам векторной оптимизации
%J Diskretnyj analiz i issledovanie operacij
%D 2007
%P 72-99
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2007_14_1_a4/
%G ru
%F DA_2007_14_1_a4
D. S. Ivanenko; A. V. Plyasunov. О~сводимости задач двухуровневого программирования к~задачам векторной оптимизации. Diskretnyj analiz i issledovanie operacij, Tome 14 (2007) no. 1, pp. 72-99. http://geodesic.mathdoc.fr/item/DA_2007_14_1_a4/

[1] Antipin A. S., “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhanika, 1997, no. 8, 125–137 | MR | Zbl

[2] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[3] Gorbachevskaya L. E., Dementev V. T., Shamardin Yu. V., Dvukhurovnevaya ekstremalnaya zadacha vybora nomenklatury izdelii, Preprint IM SO RAN No 41, Novosibirsk, 1997., 26 pp. | MR

[4] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981 | MR

[5] Zorkaltsev V. I., Khamisov O. V., Ravnovesnye modeli v ekonomike i energetike, Nauka, Novosibirsk, 2006

[6] Ivanenko D. S., Plyasunov A. V., “O svodimosti zadachi dvukhurovnevogo programmirovaniya k zadache vektornoi optimizatsii”, Trudy Instituta vychislitelnoi matematiki i matematicheskoi geofiziki SO RAN. Ser. Informatika, 5, Novosibirsk, 2005, 132–143

[7] Kochetov Yu. A., Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 4:2 (1997), 23–33 | MR

[8] Kochetov Yu. A., Plyasunov A. V., “Zadacha vybora ryada izdelii s chastichnym vneshnim finansirovaniem”, Diskret. analiz i issled. operatsii. Ser. 2, 9:2 (2002), 78–96 | MR | Zbl

[9] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[10] Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo nelineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 7:2 (2000), 89–113 | MR | Zbl

[11] Plyasunov A. V., “Zadacha dvukhurovnevogo lineinogo programmirovaniya s mnogovariantnym rantsem na nizhnem urovne”, Diskret. analiz i issled. operatsii. Ser. 2, 10:1 (2003), 44–52 | MR | Zbl

[12] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR | Zbl

[13] Yudin D. B., Golshtein E. G., Lineinoe programmirovanie (teoriya, metody i prilozheniya), Nauka, M., 1969 | MR

[14] Antipin A. S., “From optima to equilibria”, Dynamics of non-homogeneous systems, Proceedings of Institute of System Analysis of the Russian Academy of Science, 3, Moscow, 2000, 35–64

[15] Bard J., “Optimality conditions for the bilevel programming problem”, Naval Research Logistics Quarterly, 31:1 (1984), 13–26 | DOI | MR | Zbl

[16] Ben-Ayed O., “Bilevel linear programming”, Computers and Operations Research, 20:5 (1993), 485–501 | DOI | MR | Zbl

[17] Candler W., “A linear bilevel programming algorithm: a comment”, Computers and Operations Research, 15:3 (1988), 297–298 | DOI | MR | Zbl

[18] Clarke P., Westerberg A., “A Note on the optimality conditions for the bilevel programming problem”, Naval Research Logistics, 35:5 (1988), 413–418 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[19] Dempe S. J., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[20] Ehrgott M., A multicriteria optimization, Springer, Berlin, Heidelberg, 2005 | MR

[21] Fliege J., Vicente L. N., “Multicriteria approach to bilevel optimization”, J. of Optimization Theory and Applications, 131:2 (2006), 209–225 | DOI | MR | Zbl

[22] Füulöp J., On the equivalence between a linear bilevel programming problem and linear potimization over the efficient set, Technical report WP 93-1, Laboratory of operations research and decision systems, Computer and automation Institute, Hungarian Academy of Sciences, 1993

[23] Goh C. J., Yang X. Q., “A nonlinear Lagrangian theory for nonconvex optimization”, J. Optimization Theory and Applications, 109:1 (2001), 99–121 | DOI | MR | Zbl

[24] Haurie A., Savard G., White D., “A note on an efficient point algorithm for a linear two-stage optimization problem”, Operations Research, 38:3 (1990), 553–555 | DOI | Zbl

[25] Marcotte P., Savard G., “A note on the pareto optimality of solutions to the linear bilevel programming problem”, Computers and Operations Research, 18:4 (1991), 355–359 | DOI | MR | Zbl

[26] Nemhauser G. L., Wolsey L. A., Integer and combinatorial optimization, John Wiley Sons, Inc., New York, 1988 | MR

[27] Rubinov A. M., Gasimov R. N., “Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation”, J. Global Optimization, 29:4 (2004), 455–477 | DOI | MR

[28] Ünlü G., “A linear bilevel programming algorithm based on bicriteria programming”, Computers and Operations Research, 14:2 (1987), 173–179 | DOI | MR | Zbl

[29] Wen U., Hsu S., “A note on a linear bilevel programming algorithm based on bicriteria programming”, Computers and Operations Research, 16:1 (1989), 79–83 | DOI | MR | Zbl