A lower bound for the number of transitive perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 49-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct at least $\dfrac1{8n^2\sqrt3}e^{\pi\sqrt{2n/3}}(1+o(1))$ pairwise nonequivalent transitive extended perfect codes of length $4n$ as $n\to\infty$.
@article{DA_2006_13_4_a4,
     author = {V. N. Potapov},
     title = {A lower bound for the number of transitive perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--59},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - A lower bound for the number of transitive perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2006
SP  - 49
EP  - 59
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/
LA  - ru
ID  - DA_2006_13_4_a4
ER  - 
%0 Journal Article
%A V. N. Potapov
%T A lower bound for the number of transitive perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2006
%P 49-59
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/
%G ru
%F DA_2006_13_4_a4
V. N. Potapov. A lower bound for the number of transitive perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 49-59. http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/