A lower bound for the number of transitive perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 49-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct at least $\dfrac1{8n^2\sqrt3}e^{\pi\sqrt{2n/3}}(1+o(1))$ pairwise nonequivalent transitive extended perfect codes of length $4n$ as $n\to\infty$.
@article{DA_2006_13_4_a4,
     author = {V. N. Potapov},
     title = {A lower bound for the number of transitive perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--59},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - A lower bound for the number of transitive perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2006
SP  - 49
EP  - 59
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/
LA  - ru
ID  - DA_2006_13_4_a4
ER  - 
%0 Journal Article
%A V. N. Potapov
%T A lower bound for the number of transitive perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2006
%P 49-59
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/
%G ru
%F DA_2006_13_4_a4
V. N. Potapov. A lower bound for the number of transitive perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 49-59. http://geodesic.mathdoc.fr/item/DA_2006_13_4_a4/

[1] Malyugin S. A., “Tranzitivnye sovershennye kody dliny 15”, Trudy konferentsii “Diskretnyi analiz i issledovanie operatsii”, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2004, 96

[2] Soloveva F. I., “O postroenii tranzitivnykh kodov”, Problemy peredachi informatsii, 41:3 (2005), 23–31 | MR

[3] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR

[4] Avgustinovich S. V., Heden O., Solov'eva F. I., “The classification of some perfect codes”, Des. Codes Cryptogr., 31:3 (2004), 313–318 | DOI | MR | Zbl

[5] Phelps K., “A general product construction for error correcting codes”, SIAM J. Algebraic and Discrete Methods, 5:2 (1984), 224–228 | DOI | MR | Zbl

[6] Zinoviev V. A., “On generalized concatenated codes”, Topic in Information Theory, Colloq. Math. Soc. Janos Boliai, North-Holland, Amsterdam, 1977, 587–592 | MR