Superpositions of elementary arithmetic functions
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 33-48
Voir la notice de l'article provenant de la source Math-Net.Ru
A new concise proof of the following theorem is found: the system of four functions $\{x+y,x\div y,\lfloor x/y\rfloor,2^x\}$ induces the class of Kalmar elementary functions. An elimination mode of bounded summation is used in the proof.
@article{DA_2006_13_4_a3,
author = {S. S. Marchenkov},
title = {Superpositions of elementary arithmetic functions},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {33--48},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2006_13_4_a3/}
}
S. S. Marchenkov. Superpositions of elementary arithmetic functions. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 33-48. http://geodesic.mathdoc.fr/item/DA_2006_13_4_a3/