On bounds for the incidentor chromatic number of a~directed weighted multigraph
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
An incidentor coloring of a directed weighted multigraph is called admissible if: (a) the incidentors adjoining the same vertex are colored by different colors; (b) the difference between the colors of the final and initial incidentors of each arc is at least the weight of this arc. The minimum number of colors necessary for an admissible coloring of all incidentors of a multigraph $G$ is bounded above and below. The upper and lower bounds differ by $\lceil\Delta/2\rceil$ where $\Delta$ is the degree of $G$.
@article{DA_2006_13_4_a1,
author = {V. G. Vizing},
title = {On bounds for the incidentor chromatic number of a~directed weighted multigraph},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {18--25},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2006_13_4_a1/}
}
TY - JOUR AU - V. G. Vizing TI - On bounds for the incidentor chromatic number of a~directed weighted multigraph JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 18 EP - 25 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_4_a1/ LA - ru ID - DA_2006_13_4_a1 ER -
V. G. Vizing. On bounds for the incidentor chromatic number of a~directed weighted multigraph. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 4, pp. 18-25. http://geodesic.mathdoc.fr/item/DA_2006_13_4_a1/