A completeness theorem in the class of quasimonotonic functions
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 62-82
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of functional completeness is solved in the class $Q_L$ of quasimonotonic functions on a finite semilattice $L$ under superposition with all so-called weakly essential functions. An effective description of the precomplete classes in $Q_L$ containing all weakly essential functions is given. The asymptotics of the number of such classes on the semilattice of all nonempty subsets of a $k$-element set is found as $k\to\infty$.
@article{DA_2006_13_3_a4,
author = {N. G. Parvatov},
title = {A completeness theorem in the class of quasimonotonic functions},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {62--82},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/}
}
N. G. Parvatov. A completeness theorem in the class of quasimonotonic functions. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 62-82. http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/