A completeness theorem in the class of quasimonotonic functions
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 62-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of functional completeness is solved in the class $Q_L$ of quasimonotonic functions on a finite semilattice $L$ under superposition with all so-called weakly essential functions. An effective description of the precomplete classes in $Q_L$ containing all weakly essential functions is given. The asymptotics of the number of such classes on the semilattice of all nonempty subsets of a $k$-element set is found as $k\to\infty$.
@article{DA_2006_13_3_a4,
     author = {N. G. Parvatov},
     title = {A completeness theorem in the class of quasimonotonic functions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {62--82},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - A completeness theorem in the class of quasimonotonic functions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2006
SP  - 62
EP  - 82
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/
LA  - ru
ID  - DA_2006_13_3_a4
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T A completeness theorem in the class of quasimonotonic functions
%J Diskretnyj analiz i issledovanie operacij
%D 2006
%P 62-82
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/
%G ru
%F DA_2006_13_3_a4
N. G. Parvatov. A completeness theorem in the class of quasimonotonic functions. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 62-82. http://geodesic.mathdoc.fr/item/DA_2006_13_3_a4/

[1] Agibalov G. P., Diskretnye avtomaty na polureshetkakh, Izd-vo Tomckogo un-ta, Tomsk, 1993 | Zbl

[2] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[3] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR | Zbl

[4] Kostrikin A. I., Vvedenie v algebru. Chast III. Osnovnye struktury algebry, Uchebnik dlya vuzov, Fiziko-matematicheskaya literatura, M., 2001

[5] Parvatov N. G., “Funktsionalnaya polnota v zamknutykh klassakh kvazimonotonnykh i monotonnykh trekhznachnykh funktsii na polureshetke”, Diskret. analiz i issled. operatsii. Ser 1, 10:1 (2003), 61–73 | MR

[6] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Sb. statei po matematicheskoi logike i nekotorym voprosam kibernetiki, Trudy Matematicheskogo in-ta im. V. A. Steklova, 51, Izd-vo AN SSSR, M., 1958, 5–142

[7] Shennon K., “Sintez dvukhpolyusnykh pereklyuchatelnykh skhem”, Raboty po teorii informatsii i kibernetike, Izd-vo inostrannoi literatury, 1963, 59–105