A criterion for positive completeness in ternary logic
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 27-39
Voir la notice de l'article provenant de la source Math-Net.Ru
The operator of positive closure is considered on the set $P_k$ of functions of $k$-valued logic. Some positive complete systems of functions are defined. It is proved that every positive complete class of functions from $P_k$ is positive generated by the set of all functions depending on at most $k$ variables. For each $k\geqslant 3$, the three families of positive precomplete classes are defined. It is shown that, for $k=3$, the 10 classes of these families constitute a criterion system.
@article{DA_2006_13_3_a2,
author = {S. S. Marchenkov},
title = {A criterion for positive completeness in ternary logic},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {27--39},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/}
}
S. S. Marchenkov. A criterion for positive completeness in ternary logic. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 27-39. http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/