A criterion for positive completeness in ternary logic
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 27-39

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator of positive closure is considered on the set $P_k$ of functions of $k$-valued logic. Some positive complete systems of functions are defined. It is proved that every positive complete class of functions from $P_k$ is positive generated by the set of all functions depending on at most $k$ variables. For each $k\geqslant 3$, the three families of positive precomplete classes are defined. It is shown that, for $k=3$, the 10 classes of these families constitute a criterion system.
@article{DA_2006_13_3_a2,
     author = {S. S. Marchenkov},
     title = {A criterion for positive completeness in ternary logic},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {27--39},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - A criterion for positive completeness in ternary logic
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2006
SP  - 27
EP  - 39
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/
LA  - ru
ID  - DA_2006_13_3_a2
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T A criterion for positive completeness in ternary logic
%J Diskretnyj analiz i issledovanie operacij
%D 2006
%P 27-39
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/
%G ru
%F DA_2006_13_3_a2
S. S. Marchenkov. A criterion for positive completeness in ternary logic. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 27-39. http://geodesic.mathdoc.fr/item/DA_2006_13_3_a2/