Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2006_13_3_a0, author = {A. E. Baburin and E. Kh. Gimadi}, title = {Certain generalization of the maximum traveling salesman problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--12}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2006_13_3_a0/} }
TY - JOUR AU - A. E. Baburin AU - E. Kh. Gimadi TI - Certain generalization of the maximum traveling salesman problem JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 3 EP - 12 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_3_a0/ LA - ru ID - DA_2006_13_3_a0 ER -
A. E. Baburin; E. Kh. Gimadi. Certain generalization of the maximum traveling salesman problem. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/DA_2006_13_3_a0/
[1] Kostochka A. V., Serdyukov A. I., “Polinomialnye algoritmy s otsenkami 3/4 i 5/6 dlya zadachi kommivoyazhera na maksimum”, Upravlyaemye sistemy, Sb. nauch. tr., no. 26, In-t matematiki SO AN SSSR, Novosibirsk, 1985, 55–59 | MR
[2] Serdyukov A. I., “Asimptoticheski tochnyi algoritm dlya zadachi kommivoyazhera na maksimum v evklidovom prostranstve”, Upravlyaemye sistemy, Sb. nauch. tr., no. 27, In-t matematiki SO AN SSSR, Novosibirsk, 1987, 79–87 | MR
[3] Kharari F., Teoriya grafov, Mir, M., 1973 | MR
[4] Edmonds J., Johnson E. L., “Matchings: a well solvable class of integer linear programs”, Combinatorial structures and their applications, Gordon and Breach, New York, 1970, 89–92 | MR
[5] Gabow H. N., “An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems”, Proc. 15th annual ACM symposium on theory of computing (Boston, April 25–27, 1983), ACM, New York, 1983, 448–456
[6] Gimadi E. Kh., Serdukov A. I., “A problem of finding the maximal spanning connected subgraph with given vertex degrees”, Operation Research Proceedings, 2000, Springer-Verlag, Berlin, 2001, 55–59 | MR | Zbl
[7] Havel V., “A note to question of existance of finite graphs”, Casopis Pest Mat., 80 (1955), 477–480 | MR | Zbl
[8] Lawler E. L., Lenstra J. K., Rinnoy Kan A. H. G., Shmoys D. B. (eds.), The traveling salesman problem: A guided tour of combinatorial optimization, John Wiley Sons, Chichester, 1985 | MR | Zbl
[9] A. Punnen and G. Gutin (eds.), The traveling salesman problem and its variations, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003 | MR