Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2006_13_2_a3, author = {V. V. Servakh}, title = {A polynomially solvable case of the three-stage {Johnson} problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {44--55}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2006_13_2_a3/} }
V. V. Servakh. A polynomially solvable case of the three-stage Johnson problem. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 2, pp. 44-55. http://geodesic.mathdoc.fr/item/DA_2006_13_2_a3/
[1] Glebov N. I., “Nekotorye sluchai svodimosti $m$-stanochnoi zadachi Dzhonsona k zadacham s dvumya stankami”, Upravlyaemye sistemy, Sb. nauch. tr., 17, In-t matematiki SO AN SSSR, Novosibirsk, 1978, 46–51
[2] Levner E. V., “Setevoi podkhod k zadacham teorii raspisanii”, Issledovaniya po diskretnoi matematike, Nauka, M., 1973, 135–150
[3] Achugbue J. O., Chin F. Y., “Complexity and solutions of some three-stage shop scheduling problems”, Math. Oper. Res., 1:4 (1982), 532–544 | DOI | MR
[4] Burns F., Rooker J., “Three-stage flow-shops with recessive second stage”, Oper. Res., 26:1 (1978), 207–208 | DOI | MR | Zbl
[5] Garey M. R., Johnson D. S., Sethi R., “The complexity of flow shop and job shop scheduling”, Math. Oper. Res., 1:2 (1976), 117–129 | DOI | MR | Zbl
[6] Johnson S. M., “Optimal two and three stage production schedules with setup times included”, Naval. Res. Logist. Quart., 1:1 (1954), 61–68 | DOI