Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2006_13_2_a0, author = {A. E. Baburin and E. Kh. Gimadi}, title = {An approximate algorithm for finding a maximum-weight $d$-homogeneous connected spanning subgraph in a~complete graph with random edge weights}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--20}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2006_13_2_a0/} }
TY - JOUR AU - A. E. Baburin AU - E. Kh. Gimadi TI - An approximate algorithm for finding a maximum-weight $d$-homogeneous connected spanning subgraph in a~complete graph with random edge weights JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 3 EP - 20 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_2_a0/ LA - ru ID - DA_2006_13_2_a0 ER -
%0 Journal Article %A A. E. Baburin %A E. Kh. Gimadi %T An approximate algorithm for finding a maximum-weight $d$-homogeneous connected spanning subgraph in a~complete graph with random edge weights %J Diskretnyj analiz i issledovanie operacij %D 2006 %P 3-20 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2006_13_2_a0/ %G ru %F DA_2006_13_2_a0
A. E. Baburin; E. Kh. Gimadi. An approximate algorithm for finding a maximum-weight $d$-homogeneous connected spanning subgraph in a~complete graph with random edge weights. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 2, pp. 3-20. http://geodesic.mathdoc.fr/item/DA_2006_13_2_a0/
[1] Baburin A. E., Gimadi E. Kh., “Ob odnom obobschenii zadachi kommivoyazhëra na maksimum”, Diskret. analiz i issled. operatsii. Ser. 1, 13:3 (2006), 3–12 | MR
[2] Gimadi E. Kh., Glebov N. I., Perepelitsa V. A., “Algoritmy s otsenkami dlya zadach diskretnoi optimizatsii”, Problemy kibernetiki, 31, Nauka, M., 1975, 35–42
[3] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR
[4] Baburin E., Gimadi E. Kh., “Approximation algorithms for finding a maximum-weight spanning connected subgraph with given vertex degrees”, Operations Research Proceedings 2004 \bookunfo Selected Papers. International Conference OR 2004, Tilburg, Springer, Berlin, 2005, 343–351
[5] Gimadi E. Kh., Serdukov A. I., “A problem of finding the maximal spanning connected subgraph with given vertex degrees”, Operations Research Proceedings 2004, Selected Papers. International Conference OR 2000, Heidelberg, Springer, Berlin, 2001, 55–59 | MR | Zbl
[6] The traveling salesman problem and its variations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003