Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2006_13_1_a4, author = {A. A. Lazarev and R. R. Sadykov and S. V. Sevast'yanov}, title = {A scheme of approximation solution of problem $1|R_j|L_{\max}$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {57--76}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2006_13_1_a4/} }
TY - JOUR AU - A. A. Lazarev AU - R. R. Sadykov AU - S. V. Sevast'yanov TI - A scheme of approximation solution of problem $1|R_j|L_{\max}$ JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 57 EP - 76 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_1_a4/ LA - ru ID - DA_2006_13_1_a4 ER -
%0 Journal Article %A A. A. Lazarev %A R. R. Sadykov %A S. V. Sevast'yanov %T A scheme of approximation solution of problem $1|R_j|L_{\max}$ %J Diskretnyj analiz i issledovanie operacij %D 2006 %P 57-76 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2006_13_1_a4/ %G ru %F DA_2006_13_1_a4
A. A. Lazarev; R. R. Sadykov; S. V. Sevast'yanov. A scheme of approximation solution of problem $1|R_j|L_{\max}$. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/DA_2006_13_1_a4/
[1] Lazarev A. A., Effektivnye algoritmy resheniya nekotorykh zadach teorii raspisanii dlya odnogo pribora s direktivnymi srokami obsluzhivaniya trebovanii, Dissertatsiya na soiskanie uchenoi stepeni k.f.-m.n., Kazanskii gos. un-t, Kazan, 1989
[2] Lazarev A. A., Shulgina O. N., “Psevdopolinomialnyi algoritm resheniya NP-trudnoi zadachi minimizatsii maksimalnogo vremennogo smescheniya”, Trudy XI mezhdunarodnoi Baikalskoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya” (5–12 iyulya), SEI SO RAN, Irkutsk, Baikal, 1998, 163–167 | MR
[3] Adams J., Balas E., Zawack D., “The shifting bottleneck procedure for job shop scheduling”, J. Manag. Sci., 34:3 (1988), 391–401 | DOI | MR | Zbl
[4] Baker K. R., Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., “Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints”, J. Oper. Res., 31:2 (1983), 381–386 | DOI
[5] Baker K. R.,Su Z. S., “Sequencing with due dates and early start times to minimize tardiness”, J. Naval Res. Logist. Quart., 21:1 (1974), 171–176 | DOI | MR | Zbl
[6] Carlier J., “The one-machine sequencing problem”, European J. of Oper. Res., 11:1 (1982), 42–47 | DOI | MR | Zbl
[7] Graham R. L., Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., “Optimization and approximation in deterministic sequencing and scheduling: a survey”, Ann. Discrete Math., 5 (1979), 287–326 | DOI | MR | Zbl
[8] Hall L. A., Shmoys D. B., “Jackson's rule for one-machine scheduling: making a good heuristic better”, J. Math. Oper. Res., 17:1 (1992), 22–35 | DOI | MR | Zbl
[9] Hoogeveen J. A., “Minimizing maximum promptness and maximum lateness on a single machine”, J. Math. Oper. Res., 21:1 (1996), 100–114 | DOI | MR | Zbl
[10] Jackson J. R., Scheduling a production line to minimize maximum tardiness, Manag. Sci. Res. Project, No 43. UCLA, 1955
[11] Lageweg B. J., Lenstra J. K., Rinnooy Kan A. H. G., “Minimizing maximum lateness on one machine: computational experience and some applications”, J. Statistica Neerlandica, 30:1 (1976), 25–41 | DOI | MR | Zbl
[12] Lawler E. L., “Optimal sequencing of a single machine subject to precedence constraints”, J. Manag. Sci., 19:5 (1973), 544–546 | DOI | Zbl
[13] Lenstra J. K., Rinnooy Kan A. H. G., Brucker P., “Complexity of machine scheduling problems”, Annals of Oper. Res., 1 (1975), 343–362 | MR
[14] Mastrolilli M., “Efficient approximation schemes for scheduling problems with release dates and delivery times”, J. of Scheduling, 6:6 (2003), 521–531 | DOI | MR | Zbl
[15] McMahon G., Florian M., “On scheduling with ready times and due dates to minimize maximum lateness”, J. Oper. Res., 23:3 (1975), 475–482 | DOI | MR | Zbl
[16] Péridy L., Pinson E., Rivraux D., “Using short-term memory to minimize the weighted number of late jobs on a single machine”, European J. of Oper. Res., 148:3 (2003), 591–603 | DOI | MR | Zbl
[17] Potts C. N., “Analysis of a heuristic for one machine sequencing with release dates and delivery times”, J. Oper. Res., 28:6 (1980), 1436–1441 | DOI | MR | Zbl
[18] Simons B. B., “A fast algorithm for single processor scheduling”, Proc. of the 19th Annual symposium foundftion of computer science, Ann. Arbor, New York, 1978, 246–252 | MR