Approximation solution of the supply management problem
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 27-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered of optimizing the product delivery from suppliers to consumers. The size of each open supply is bounded both below and above, the size of consumption for each consumer is bounded below, the supply cost functions are linear for nonzero volumes of supply. A fully polynomial time approximation scheme is proposed for this problem in the case of one consumer, and the complexity of the problem is studied in the general case.
@article{DA_2006_13_1_a2,
     author = {A. V. Eremeev and A. A. Romanova and V. V. Servakh and S. S. Chauhan},
     title = {Approximation solution of the supply management problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {27--39},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2006_13_1_a2/}
}
TY  - JOUR
AU  - A. V. Eremeev
AU  - A. A. Romanova
AU  - V. V. Servakh
AU  - S. S. Chauhan
TI  - Approximation solution of the supply management problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2006
SP  - 27
EP  - 39
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2006_13_1_a2/
LA  - ru
ID  - DA_2006_13_1_a2
ER  - 
%0 Journal Article
%A A. V. Eremeev
%A A. A. Romanova
%A V. V. Servakh
%A S. S. Chauhan
%T Approximation solution of the supply management problem
%J Diskretnyj analiz i issledovanie operacij
%D 2006
%P 27-39
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2006_13_1_a2/
%G ru
%F DA_2006_13_1_a2
A. V. Eremeev; A. A. Romanova; V. V. Servakh; S. S. Chauhan. Approximation solution of the supply management problem. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/DA_2006_13_1_a2/

[1] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR | Zbl

[2] Gens G. V., Levner E. V., Effektivnye priblizhennye algoritmy dlya kombinatornykh zadach, Preprint, TsEMI AN SSSR, M., 1981

[3] Chauhan S. S., Eremeev A. V., Kolokolov A. A., Servakh V. V., “Concave cost supply management problem for single manufacturing unit”, Supply chain optimisation. Product/process design, facility location and flow control, Applied Optimization, 94, Springer, New York, 2005, 167–174 | Zbl

[4] Chauhan S. S., Eremeev A. V., Romanova A. A., Servakh V. V., Woeginger G. J., “Approximation of the supply scheduling problem”, Oper. Res. Lett., 33:3 (2005), 249–254 | DOI | MR | Zbl

[5] Chauhan S. S., Proth J.-M., “The concave cost supply problem”, European J. Oper. Res., 148:2 (2003), 374–383 | DOI | MR | Zbl

[6] Ibarra O., Kim C. E., “Fast approximation algorithms for the knapsack and sum of subset problems”, J. Assoc. Comput. Math., 22:4 (1975), 463–468 | MR | Zbl

[7] Woeginger G. J., “When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?”, INFORMS J. on Computing, 12:1 (2000), 57–75 | DOI | MR