Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2006_13_1_a1, author = {E. Kh. Gimadi and Yu. V. Glazkov}, title = {An asymptotically exact algorithm for one modification of planar three-index assignment}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {10--26}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/} }
TY - JOUR AU - E. Kh. Gimadi AU - Yu. V. Glazkov TI - An asymptotically exact algorithm for one modification of planar three-index assignment JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 10 EP - 26 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/ LA - ru ID - DA_2006_13_1_a1 ER -
%0 Journal Article %A E. Kh. Gimadi %A Yu. V. Glazkov %T An asymptotically exact algorithm for one modification of planar three-index assignment %J Diskretnyj analiz i issledovanie operacij %D 2006 %P 10-26 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/ %G ru %F DA_2006_13_1_a1
E. Kh. Gimadi; Yu. V. Glazkov. An asymptotically exact algorithm for one modification of planar three-index assignment. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 10-26. http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/
[1] Ageev A. A., Baburin A. E., Gimadi E. Kh., Korkishko N. M., “Algoritmy s konstantnymi otsenkami tochnosti dlya otyskaniya dvukh reberno neperesekayuschikhsya gamiltonovykh tsiklov ekstremalnogo vesa”, Vserossiiskaya konferentsiya “Problemy optimizatsii i ekonomicheskie prilozheniya”. Materialy konferentsii (Omsk, 1–5 iyulya 2003 g.), Izdatelstvo Nasledie, Omsk, 2003, 9–12
[2] Baburin A. E., Gimadi E. Kh., Korkishko N. M., “Priblizhennye algoritmy dlya nakhozhdeniya dvukh reberno neperesekayuschikhsya gamiltonovykh tsiklov minimalnogo vesa”, Diskret. analiz i issled. operatsii. Ser. 2, 11:1 (2004), 11–25 | MR | Zbl
[3] Voznyuk I. P., Gimadi E. Kh., Filatov M. Yu., “Asimptoticheski tochnyi algoritm dlya resheniya zadachi razmescheniya s ogranichennymi ob'emami proizvodstva”, Diskret. analiz i issled. operatsii. Ser. 2, 8:2 (2001), 3–16 | MR | Zbl
[4] Gimadi E. Kh., “Asimptoticheski tochnyi podkhod k resheniyu mnogoindeksnoi aksialnoi zadachi o naznachenii”, Trudy XI Mezhd. Baikalskoi shkoly-seminara. Plenarnye doklady, Irkutsk, 1998, 62–65
[5] Emelichev V. A., Kovalev M. M., Kravtsov M. M., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981 | MR
[6] Kravtsov M. K., Krachkovskii A. P., “O polinomialnom algoritme nakhozhdeniya asimptoticheski optimalnogo resheniya trekhindeksnoi planarnoi problemy vybora”, Zhurn. vychisl. matem. i matem. fiz., 41:2 (2001), 342–345 | MR | Zbl
[7] Kravtsov M. K., Krachkovskii A. P., “Asimptoticheskaya optimalnost plana transportnoi zadachi, postroennogo metodom minimalnogo elementa”, Kibernetika i sistemnyi analiz, 1999, no. 1, 144–151 | MR | Zbl
[8] Ore O., Teoriya grafov, Nauka, M., 1980 | MR
[9] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR
[10] Baburin A. Y., Gimadi E. Kh., Korkishko N. M., “Algorithms with performance guarantees for a metric problem of finding two edge-disjoint Hamiltonian circuits of minimum total weight”, Operation Research Proceedings 2003, Springer, Berlin, 2004, 316–323 | MR | Zbl
[11] Balas E., Saltzman M. J., “Facets of the three-index assignment polytope”, Discrete Appl. Math., 23:3 (1989), 201–229 | DOI | MR | Zbl
[12] Balas E., Saltzman M. J., “An algorithm for the three-index assignment problem”, Oper. Res., 39:1 (1991), 150–161 | DOI | MR | Zbl
[13] Croce F. D., Pashos V. Th., Calvo R. W., “Approximating the 2-peripatetic salesman problem”, 7th Workshop on models and algorithms for planning and scheduling problems, MAPS 2005 (Siena, Italy, June 6–10), 2005, 114–116
[14] Fon-Der-Flaass D. G., “Array of distinct representatives – a very simple NP-complete problem”, Discrete Math., 171:1–3 (1997), 295–298 | DOI | MR | Zbl
[15] Frieze A. M., “Complexity of a 3-dimensional assignment problem”, European J. Oper. Res., 13:2 (1983), 161–164 | DOI | MR | Zbl
[16] Gimadi E. Kh., “On some probability inequalities in some discrete optimization problems”, Operation Research Proceedings 2005 in 2006 (to appear)
[17] Gimadi E. Kh., Kairan N. M., “Multi-index assignment problem: an asymptotically optimal approach”, Proc. 8th IEEE Intern. Conf. on emerging technologies and factory automation (Antibes–Juan les Pins, France, 2001), IEEE, NY, 2001, 707–710
[18] Gimadi E. Kh., Korkishko N. M., “On some modifications of three index planar assignment problem”, Discrete optimization methods in production and logistics. The second int. workshop, Proc. DOM'2004 (Omsk, July 20–27, 2004), Omsk, 2004, 161–165
[19] Hopcroft J. E., Karp R. M., “An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs”, SIAM J. Comput., 2:4 (1973), 225–231 | DOI | MR | Zbl
[20] Krarup J., “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, Proc. NATO Advanced Study Inst. (Versailles, 1974), Reidel, Dordrecht, 1975, 173–178 | MR
[21] Magos D., “Tabu search for the planar three-index assignment problem”, J. Global Optim., 8:1 (1996), 35–48 | DOI | MR | Zbl
[22] Spieksma F. C. R., “Multi index assignment problems: complexity, approximation, applications”, Nonlinear assignment problems, algorithms and applications. 2000, Kluwer Acad. Publ., Dordrecht, 2000, 1–12 | MR | Zbl
[23] Vlach M., “Branch and bound method for the three-index assignment problem”, Ekonomicko-Matematicky Obzor, 3 (1967), 181–191 | MR