An asymptotically exact algorithm for one modification of planar three-index assignment
Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 10-26
Voir la notice de l'article provenant de la source Math-Net.Ru
An $m$-layer three-index assignment problem is considered which is a modification of the classical planar three-index assignment problem. This problem is NP-hard for $m\geqslant2$. An approximate algorithm, solving this problem for $1$, is suggested. The bounds on its quality are proved in the case when the input data (the elements of an $m\times n\times n$ matrix) are independent identically distributed random variables whose values lie in the interval $[a_n,b_n]$, where $b_n>a_n>0$. The time complexity of the algorithm is $O(mn^2+m^{7/2})$. It is shown that in the case of a uniform distribution (and also a distribution of minorized type) the algorithm is asymptotically exact if $m=\Theta(n^{1-\theta})$ and $b_n/a_n=o(n^\theta)$ for every constant $\theta$, $0\theta1$.
@article{DA_2006_13_1_a1,
author = {E. Kh. Gimadi and Yu. V. Glazkov},
title = {An asymptotically exact algorithm for one modification of planar three-index assignment},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {10--26},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/}
}
TY - JOUR AU - E. Kh. Gimadi AU - Yu. V. Glazkov TI - An asymptotically exact algorithm for one modification of planar three-index assignment JO - Diskretnyj analiz i issledovanie operacij PY - 2006 SP - 10 EP - 26 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/ LA - ru ID - DA_2006_13_1_a1 ER -
%0 Journal Article %A E. Kh. Gimadi %A Yu. V. Glazkov %T An asymptotically exact algorithm for one modification of planar three-index assignment %J Diskretnyj analiz i issledovanie operacij %D 2006 %P 10-26 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/ %G ru %F DA_2006_13_1_a1
E. Kh. Gimadi; Yu. V. Glazkov. An asymptotically exact algorithm for one modification of planar three-index assignment. Diskretnyj analiz i issledovanie operacij, Tome 13 (2006) no. 1, pp. 10-26. http://geodesic.mathdoc.fr/item/DA_2006_13_1_a1/