Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2005_12_3_a4, author = {A. D. Korshunov}, title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions of $n$-variables). {III.} {The} case of $k\geq 3$ and arbitrary $n$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {60--73}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/} }
TY - JOUR AU - A. D. Korshunov TI - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$ JO - Diskretnyj analiz i issledovanie operacij PY - 2005 SP - 60 EP - 73 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/ LA - ru ID - DA_2005_12_3_a4 ER -
%0 Journal Article %A A. D. Korshunov %T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$ %J Diskretnyj analiz i issledovanie operacij %D 2005 %P 60-73 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/ %G ru %F DA_2005_12_3_a4
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/