The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2005_12_3_a4,
     author = {A. D. Korshunov},
     title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions of $n$-variables). {III.} {The} case of $k\geq 3$ and arbitrary $n$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/}
}
TY  - JOUR
AU  - A. D. Korshunov
TI  - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2005
SP  - 60
EP  - 73
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/
LA  - ru
ID  - DA_2005_12_3_a4
ER  - 
%0 Journal Article
%A A. D. Korshunov
%T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
%J Diskretnyj analiz i issledovanie operacij
%D 2005
%P 60-73
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/
%G ru
%F DA_2005_12_3_a4
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/