Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2005_12_3_a4, author = {A. D. Korshunov}, title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions of $n$-variables). {III.} {The} case of $k\geq 3$ and arbitrary $n$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {60--73}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/} }
TY - JOUR AU - A. D. Korshunov TI - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$ JO - Diskretnyj analiz i issledovanie operacij PY - 2005 SP - 60 EP - 73 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/ LA - ru ID - DA_2005_12_3_a4 ER -
%0 Journal Article %A A. D. Korshunov %T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$ %J Diskretnyj analiz i issledovanie operacij %D 2005 %P 60-73 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/ %G ru %F DA_2005_12_3_a4
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/
[1] Korshunov A. D., “O chisle monotonnykh bulevykh funktsii”, Problemy kibernetiki, no. 38, Nauka, M., 1981, 5–108 | MR
[2] Korshunov A. D., “Chislo $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii). Chast I. Sluchai chëtnykh $n$ i $k=2$”, Diskret. analiz i issled. operatsii. Ser. 1, 10:4 (2003), 31–69 | MR | Zbl
[3] Korshunov A. D., “O chisle $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii ot $n$ peremennykh)”, II Rossiiskaya konferentsiya “Diskretnyi analiz i issledovanie operatsii”., Materialy konferentsii (Novosibirsk, 28 iyunya–2 iyulya 2004 g.), Izd-vo Instituta matematiki, Novosibirsk, 2004, 36–38 | MR
[4] Korshunov A. D., “O chisle $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii ot $n$ peremennykh)”, Doklady RAN, 397:5 (2004), 593–595 | MR
[5] Korshunov A. D., “Chislo $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii). Chast II. Sluchai nechëtnykh $n$ i $k=2$”, Diskret. analiz i issled. operatsii. Ser. 1, 12:1 (2005), 12–70 | MR | Zbl
[6] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000 | MR | Zbl
[7] Nigmatullin R. G., “Nekotorye metricheskie sootnosheniya v edinichnom kube”, Sb. nauchn. tr., Diskretnyi analiz, no. 9, In-t matematiki SO AN SSSR, Novosibirsk, 1967, 47–58 | MR
[8] Feller V., Vvedenie v teoriyu veroyatnostei i eë prilozheniya, t. 1, Mir, M., 1967
[9] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR | Zbl
[10] Post E., The two-valued iterative systems of mathematical logics, Princeton Univ. Press, Princeton, 1941 | MR | Zbl