The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2005_12_3_a4,
     author = {A. D. Korshunov},
     title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions of $n$-variables). {III.} {The} case of $k\geq 3$ and arbitrary $n$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/}
}
TY  - JOUR
AU  - A. D. Korshunov
TI  - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2005
SP  - 60
EP  - 73
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/
LA  - ru
ID  - DA_2005_12_3_a4
ER  - 
%0 Journal Article
%A A. D. Korshunov
%T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$
%J Diskretnyj analiz i issledovanie operacij
%D 2005
%P 60-73
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/
%G ru
%F DA_2005_12_3_a4
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq 3$ and arbitrary $n$. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 60-73. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a4/

[1] Korshunov A. D., “O chisle monotonnykh bulevykh funktsii”, Problemy kibernetiki, no. 38, Nauka, M., 1981, 5–108 | MR

[2] Korshunov A. D., “Chislo $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii). Chast I. Sluchai chëtnykh $n$ i $k=2$”, Diskret. analiz i issled. operatsii. Ser. 1, 10:4 (2003), 31–69 | MR | Zbl

[3] Korshunov A. D., “O chisle $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii ot $n$ peremennykh)”, II Rossiiskaya konferentsiya “Diskretnyi analiz i issledovanie operatsii”., Materialy konferentsii (Novosibirsk, 28 iyunya–2 iyulya 2004 g.), Izd-vo Instituta matematiki, Novosibirsk, 2004, 36–38 | MR

[4] Korshunov A. D., “O chisle $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii ot $n$ peremennykh)”, Doklady RAN, 397:5 (2004), 593–595 | MR

[5] Korshunov A. D., “Chislo $k$-nerazdelënnykh semeistv podmnozhestv $n$-elementnogo mnozhestva ($k$-nerazdelënnykh bulevykh funktsii). Chast II. Sluchai nechëtnykh $n$ i $k=2$”, Diskret. analiz i issled. operatsii. Ser. 1, 12:1 (2005), 12–70 | MR | Zbl

[6] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000 | MR | Zbl

[7] Nigmatullin R. G., “Nekotorye metricheskie sootnosheniya v edinichnom kube”, Sb. nauchn. tr., Diskretnyi analiz, no. 9, In-t matematiki SO AN SSSR, Novosibirsk, 1967, 47–58 | MR

[8] Feller V., Vvedenie v teoriyu veroyatnostei i eë prilozheniya, t. 1, Mir, M., 1967

[9] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR | Zbl

[10] Post E., The two-valued iterative systems of mathematical logics, Princeton Univ. Press, Princeton, 1941 | MR | Zbl