On the largest dimension of anticodes
Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 54-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2005_12_3_a3,
     author = {A. J. van Zanten},
     title = {On the largest dimension of anticodes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {54--59},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/}
}
TY  - JOUR
AU  - A. J. van Zanten
TI  - On the largest dimension of anticodes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2005
SP  - 54
EP  - 59
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/
LA  - ru
ID  - DA_2005_12_3_a3
ER  - 
%0 Journal Article
%A A. J. van Zanten
%T On the largest dimension of anticodes
%J Diskretnyj analiz i issledovanie operacij
%D 2005
%P 54-59
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/
%G ru
%F DA_2005_12_3_a3
A. J. van Zanten. On the largest dimension of anticodes. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 54-59. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/

[1] Ahlswede R., Cai N., Zhang Z., “Diametric theorems in sequence spaces”, Combinatorica, 12:1 (1992), 1–17 | DOI | MR | Zbl

[2] Ahlswede R. F., Khachatrian L. H., “The diametric theorem in Hamming spaces-optimal anticodes”, Adv. in Appl. Math., 20:4 (1998), 429–449 | DOI | MR | Zbl

[3] Farrell P. G., “Linear binary anticodes”, Electronic Letter, 6:13 (1970), 419–421 | DOI

[4] Katona G. O. H., “Intersection theorem for systems of finites sets”, Acta Math. Acad. Sci. Hungary, 15:3–4 (1964), 329–337 | DOI | MR | Zbl

[5] Kleitman D. J., “On a combinatorial conjecture of Erdős”, J. Comb. Theory, 1:1 (1966), 209–214 | MR | Zbl

[6] Maki G. K., Tracey J. H., “Maximum distance linear codes”, IEEE Trans. Inform. Theory, 17:5 (1971), 632 | DOI | Zbl

[7] Reddy S. M., “On block codes with specified maximum distance”, IEEE Trans. Inform. Theory, 18:6 (1973), 823–824 | DOI | MR