Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2005_12_3_a3, author = {A. J. van Zanten}, title = {On the largest dimension of anticodes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {54--59}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/} }
A. J. van Zanten. On the largest dimension of anticodes. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 3, pp. 54-59. http://geodesic.mathdoc.fr/item/DA_2005_12_3_a3/
[1] Ahlswede R., Cai N., Zhang Z., “Diametric theorems in sequence spaces”, Combinatorica, 12:1 (1992), 1–17 | DOI | MR | Zbl
[2] Ahlswede R. F., Khachatrian L. H., “The diametric theorem in Hamming spaces-optimal anticodes”, Adv. in Appl. Math., 20:4 (1998), 429–449 | DOI | MR | Zbl
[3] Farrell P. G., “Linear binary anticodes”, Electronic Letter, 6:13 (1970), 419–421 | DOI
[4] Katona G. O. H., “Intersection theorem for systems of finites sets”, Acta Math. Acad. Sci. Hungary, 15:3–4 (1964), 329–337 | DOI | MR | Zbl
[5] Kleitman D. J., “On a combinatorial conjecture of Erdős”, J. Comb. Theory, 1:1 (1966), 209–214 | MR | Zbl
[6] Maki G. K., Tracey J. H., “Maximum distance linear codes”, IEEE Trans. Inform. Theory, 17:5 (1971), 632 | DOI | Zbl
[7] Reddy S. M., “On block codes with specified maximum distance”, IEEE Trans. Inform. Theory, 18:6 (1973), 823–824 | DOI | MR