Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2005_12_2_a1, author = {V. A. Emelichev and K. G. Kuz'min}, title = {Analysis of the sensitivity of an efficient solution of a vector {Boolean} problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {24--43}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2005_12_2_a1/} }
TY - JOUR AU - V. A. Emelichev AU - K. G. Kuz'min TI - Analysis of the sensitivity of an efficient solution of a vector Boolean problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$ JO - Diskretnyj analiz i issledovanie operacij PY - 2005 SP - 24 EP - 43 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2005_12_2_a1/ LA - ru ID - DA_2005_12_2_a1 ER -
%0 Journal Article %A V. A. Emelichev %A K. G. Kuz'min %T Analysis of the sensitivity of an efficient solution of a vector Boolean problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$ %J Diskretnyj analiz i issledovanie operacij %D 2005 %P 24-43 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2005_12_2_a1/ %G ru %F DA_2005_12_2_a1
V. A. Emelichev; K. G. Kuz'min. Analysis of the sensitivity of an efficient solution of a vector Boolean problem of the minimization of projections of linear functions onto $\mathbb R_+$ and $\mathbb R_-$. Diskretnyj analiz i issledovanie operacij, Tome 12 (2005) no. 2, pp. 24-43. http://geodesic.mathdoc.fr/item/DA_2005_12_2_a1/
[1] Berdnikova E. A., Eremin I. I., Popov L. D., “Raspredelënnye feierovskie protsessy dlya sistem lineinykh neravenstv i zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 2004, no. 2, 16–32 | MR | Zbl
[2] Bukhtoyarov S. E., Emelichev V. A., “Konechnye koalitsionnye igry: parametrizatsiya printsipa optimalnosti (“ot Pareto do Nesha”) i ustoichivost obobschënno-effektivnykh situatsii”, Dokl. NAN Belarusi, 46:6 (2002), 36–38 | MR
[3] Bukhtoyarov S. E., Emelichev V. A., “Parametrizatsiya printsipa optimalnosti (“ot Pareto do Sleitera”) i ustoichivost mnogokriterialnykh traektornykh zadach”, Diskret. analiz i issled. operatsii. Ser. 2, 10:2 (2003), 3–18 | MR
[4] Bukhtoyarov S. E., Emelichev V. A., “O kvaziustoichivosti vektornoi traektornoi zadachi s parametricheskim printsipom optimalnosti”, Izv. vuzov. Matematika, 2004, no. 1, 25–30 | MR | Zbl
[5] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Voprosy ustoichivosti vektornykh diskretnykh zadach s parametricheskim printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2003, no. 4, 155–166 | MR | Zbl
[6] Gordeev E. N., “Issledovanie ustoichivosti v optimizatsionnykh zadachakh na matroidakh v metrike $l_1$”, Kibernetika i sistemnyi analiz, 2001, no. 2, 132–144 | MR | Zbl
[7] Emelichev V. A., Krichko V. N., “Ob ustoichivosti paretovskogo optimuma vektornoi zadachi buleva programmirovaniya”, Diskretnaya matematika, 11:4 (1999), 27–32 | MR | Zbl
[8] Emelichev V. A., Krichko V. N., “Formula radiusa ustoichivosti vektornoi $l_{\infty}$-ekstremalnoi traektornoi zadachi”, Diskretnaya matematika, 16:1 (2004), 14–20 | MR | Zbl
[9] Emelichev V. A., Kuzmin K. G., “Ustoichivost effektivnogo resheniya vektornoi kombinatornoi zadachi v metrike $l_1$”, Dokl. NAN Belarusi, 47:5 (2003), 25–28 | MR
[10] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya vektornoi zadachi buleva programmirovaniya s chastnymi kriteriyami, yavlyayuschimisya proektsiyami lineinykh funktsii na $\mathbb{R}_+$”, Rossiiskaya konferentsiya “Diskret. analiz i issled. operatsii”, Materialy konf., Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2004, 140
[11] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya odnoi vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Dokl. RAN, 401:6 (2005), 733–735 | MR
[12] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl
[13] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[14] Emelichev V. A., Stepanishina Yu. V., “O kvaziustoichivosti vektornoi traektornoi zadachi mazhoritarnoi optimizatsii”, Mat. zametki, 72:1 (2002), 34–42 | MR | Zbl
[15] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR
[16] Kolokolov A. A., Devyaterikova M. V., “Analiz ustoichivosti nekotorykh algoritmov diskretnoi optimizatsii”, Avtomatika i telemekhanika, 2004, no. 3, 48–54 | MR | Zbl
[17] Lebedeva T. T., Sergienko T. I., “Sravnitelnyi analiz razlichnykh tipov ustoichivosti po ogranicheniyam vektornoi zadachi tselochislennoi optimizatsii”, Kibernetika i sistemnyi analiz, 2004, no. 1, 63–70 | MR | Zbl
[18] Leontev V. K., “Ustoichivost zadachi kommivoyazhera”, Zhurn. vychisl. matem. i matem. fiziki, 15:5 (1975), 1298–1309 | MR
[19] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995 | Zbl
[20] Chakravarti N., Wagelmans A. P. M., “Calculation of stability radii for combinatorial optimization problems”, Oper. Res. Lett., 23:1 (1998), 1–7 | DOI | MR | Zbl
[21] Devyaterikova M. V., Kolokolov A. A., “Analysis of $L$-structure stability of convex integer programming problems”, Operations Research Proceedings, Springer, 2000, 49–54 | MR
[22] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[23] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control and Cybernetics, 33:1 (2004), 127–132 | MR | Zbl
[24] Greenberg N. J., “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, Kluwer Academic Publishers, Boston, MA, 1998, 97–148 | MR
[25] Libura M., “On accuracy of solution for discrete optimization problems with perturbed coefficients of the objective function”, Ann. Oper. Res., 86 (1999), 53–62 | DOI | MR | Zbl
[26] Libura M., van der Poort E. S., Sierksma G., van der Veen J. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Appl. Math., 87:1–3 (1998), 159–185 | DOI | MR | Zbl
[27] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl