Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2004_11_4_a6, author = {A. J. van Zanten and I. N. Suparta}, title = {Totally balanced and exponentially balanced {Gray} codes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {81--98}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/} }
A. J. van Zanten; I. N. Suparta. Totally balanced and exponentially balanced Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 81-98. http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/
[1] Bhat G. S., Savage C. D., “Balanced Gray codes”, The Electronic Journal of Combinatorics, 3:1 (1996), 11 p | MR | Zbl
[2] Gilbert E. N., “Gray codes and paths on the $n$-cube”, Bell System Technical J., 37 (1958), 815–826 | MR
[3] Liu X., G. F. Schrack, “A heuristic approach for constructing symmetric Gray codes”, Applied Mathematics and Computation, 155 (2004), 55–63 | DOI | MR | Zbl
[4] Ludman J. E., “Gray code generation for MPSK signals”, IEEE Trans. Comm., COM-29:10 (1981), 1519–1522 | DOI
[5] Ludman J. E., Sampson J. L., “A technique for generating Gray codes”, J. Statisc. Plan. and Inference, 5 (1981), 171–180 | DOI | Zbl
[6] Robinson J. P., Cohn M., “Counting sequences”, IEEE Trans. Computers, C-30:1 (1981), 17–23 | MR
[7] Savage C., “A survey of combinatorial Gray codes”, SIAM Rev., 39:4 (1997), 605–629 | DOI | MR | Zbl
[8] Suparta I. N., van Zanten A. J., Balanced Gray codes, Rept. CS 03-03, Institute for Knowledge and Agent Technology, University Maastricht, Maastricht, Netherlands, 2003
[9] Vickers V. E., Silverman J., “A technique for generating specialized Gray codes”, IEEE Trans. Computers, C-29:4 (1980), 329–331 | DOI | MR
[10] Wagner D. J., West J., “Construction of uniform Gray codes”, Congressus Numerantium, 80 (1991), 217–223 | MR | Zbl