Totally balanced and exponentially balanced Gray codes
Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of Robinson and Cohn to construct balanced and totally balanced Gray codes is discussed, as well as the extended version of this method by Bhat and Savage. We introduce a slight generalization of their construction which enables us to prove a long standing conjecture of Wagner and West about the existence of Gray codes having a specific spectrum of transition counts, i.e., all transition counts are powers of 2 and the exponents of these powers differ at most 1. Such a Gray code can be considered as generalization of a totally balanced Gray code when the length of the codewords is not a 2-power.
@article{DA_2004_11_4_a6,
     author = {A. J. van Zanten and I. N. Suparta},
     title = {Totally balanced and exponentially balanced {Gray} codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/}
}
TY  - JOUR
AU  - A. J. van Zanten
AU  - I. N. Suparta
TI  - Totally balanced and exponentially balanced Gray codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2004
SP  - 81
EP  - 98
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/
LA  - en
ID  - DA_2004_11_4_a6
ER  - 
%0 Journal Article
%A A. J. van Zanten
%A I. N. Suparta
%T Totally balanced and exponentially balanced Gray codes
%J Diskretnyj analiz i issledovanie operacij
%D 2004
%P 81-98
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/
%G en
%F DA_2004_11_4_a6
A. J. van Zanten; I. N. Suparta. Totally balanced and exponentially balanced Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 81-98. http://geodesic.mathdoc.fr/item/DA_2004_11_4_a6/

[1] Bhat G. S., Savage C. D., “Balanced Gray codes”, The Electronic Journal of Combinatorics, 3:1 (1996), 11 p | MR | Zbl

[2] Gilbert E. N., “Gray codes and paths on the $n$-cube”, Bell System Technical J., 37 (1958), 815–826 | MR

[3] Liu X., G. F. Schrack, “A heuristic approach for constructing symmetric Gray codes”, Applied Mathematics and Computation, 155 (2004), 55–63 | DOI | MR | Zbl

[4] Ludman J. E., “Gray code generation for MPSK signals”, IEEE Trans. Comm., COM-29:10 (1981), 1519–1522 | DOI

[5] Ludman J. E., Sampson J. L., “A technique for generating Gray codes”, J. Statisc. Plan. and Inference, 5 (1981), 171–180 | DOI | Zbl

[6] Robinson J. P., Cohn M., “Counting sequences”, IEEE Trans. Computers, C-30:1 (1981), 17–23 | MR

[7] Savage C., “A survey of combinatorial Gray codes”, SIAM Rev., 39:4 (1997), 605–629 | DOI | MR | Zbl

[8] Suparta I. N., van Zanten A. J., Balanced Gray codes, Rept. CS 03-03, Institute for Knowledge and Agent Technology, University Maastricht, Maastricht, Netherlands, 2003

[9] Vickers V. E., Silverman J., “A technique for generating specialized Gray codes”, IEEE Trans. Computers, C-29:4 (1980), 329–331 | DOI | MR

[10] Wagner D. J., West J., “Construction of uniform Gray codes”, Congressus Numerantium, 80 (1991), 217–223 | MR | Zbl