Approximate computation of the weight function of a linear binary code
Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2004_11_4_a0,
     author = {M. N. Vyalyi},
     title = {Approximate computation of the weight function of a linear binary code},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/}
}
TY  - JOUR
AU  - M. N. Vyalyi
TI  - Approximate computation of the weight function of a linear binary code
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2004
SP  - 3
EP  - 19
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/
LA  - ru
ID  - DA_2004_11_4_a0
ER  - 
%0 Journal Article
%A M. N. Vyalyi
%T Approximate computation of the weight function of a linear binary code
%J Diskretnyj analiz i issledovanie operacij
%D 2004
%P 3-19
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/
%G ru
%F DA_2004_11_4_a0
M. N. Vyalyi. Approximate computation of the weight function of a linear binary code. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/

[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR

[2] Kitaev A. Yu., “Kvantovye vychisleniya: algoritmy i ispravlenie oshibok”, Uspekhi matematicheskikh nauk, 52:6 (199), 53–112 | MR | Zbl

[3] Kitaev A., Shen A., Vyalyi M., Klassicheskie i kvantovye vychisleniya, MTsNMO, M., 1999; Kitaev A., Shen A., Vyalyi M., Classical and quantum computation, AMS, Providence, RI, 2002

[4] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[5] Lidl R., Nidereiter Kh., Konechnye polya, Mir, M., 1989

[6] Boykin P. O., Mor T., Pulver M., Roychowdhury V. P., Vatan F., “A new universal and fault-tolerant quantum basis”, Inform. Process. Lett., 75:3 (2000), 101–107 | DOI | MR

[7] Dumer I., Micciancio D., Sudan M., “Hardness of approximating the minimum distance of a linear code”, Proc. of 40th annual symposium on foundations of computer science, IEEE Computer Society, NY, 1999, 475–485 | MR

[8] Fortnow L., Rogers J., “Complexity limitations on quantum computation”, J. Comput. and System Sci., 59:2 (1999), 240–252 | DOI | MR | Zbl

[9] Knill E., Laflamme R., On the power of one bit of quantum computation, , 1998 arXiv: /quant-ph/9802037 | MR

[10] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000 | MR

[11] Toda S., “PP is as hard as the polynomial-time hierarchy”, SIAM J. Comput., 20:5 (1991), 865–877 | DOI | MR | Zbl

[12] Vardy A., “Algorithmic complexity in coding theory and the minimum distance problem”, Proc. of 29h annual ACM symposium on the theory of computing, ACM, N.Y., 1997, 92–109 | MR