Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2004_11_4_a0, author = {M. N. Vyalyi}, title = {Approximate computation of the weight function of a linear binary code}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--19}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/} }
M. N. Vyalyi. Approximate computation of the weight function of a linear binary code. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/DA_2004_11_4_a0/
[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR
[2] Kitaev A. Yu., “Kvantovye vychisleniya: algoritmy i ispravlenie oshibok”, Uspekhi matematicheskikh nauk, 52:6 (199), 53–112 | MR | Zbl
[3] Kitaev A., Shen A., Vyalyi M., Klassicheskie i kvantovye vychisleniya, MTsNMO, M., 1999; Kitaev A., Shen A., Vyalyi M., Classical and quantum computation, AMS, Providence, RI, 2002
[4] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[5] Lidl R., Nidereiter Kh., Konechnye polya, Mir, M., 1989
[6] Boykin P. O., Mor T., Pulver M., Roychowdhury V. P., Vatan F., “A new universal and fault-tolerant quantum basis”, Inform. Process. Lett., 75:3 (2000), 101–107 | DOI | MR
[7] Dumer I., Micciancio D., Sudan M., “Hardness of approximating the minimum distance of a linear code”, Proc. of 40th annual symposium on foundations of computer science, IEEE Computer Society, NY, 1999, 475–485 | MR
[8] Fortnow L., Rogers J., “Complexity limitations on quantum computation”, J. Comput. and System Sci., 59:2 (1999), 240–252 | DOI | MR | Zbl
[9] Knill E., Laflamme R., On the power of one bit of quantum computation, , 1998 arXiv: /quant-ph/9802037 | MR
[10] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000 | MR
[11] Toda S., “PP is as hard as the polynomial-time hierarchy”, SIAM J. Comput., 20:5 (1991), 865–877 | DOI | MR | Zbl
[12] Vardy A., “Algorithmic complexity in coding theory and the minimum distance problem”, Proc. of 29h annual ACM symposium on the theory of computing, ACM, N.Y., 1997, 92–109 | MR