On the maximum length of binary words with bounded frequency of units and without identical subwords of given length
Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 3, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2004_11_3_a3,
     author = {V. N. Potapov},
     title = {On the maximum length of binary words with bounded frequency of units and without identical subwords of given length},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2004_11_3_a3/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - On the maximum length of binary words with bounded frequency of units and without identical subwords of given length
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2004
SP  - 48
EP  - 58
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2004_11_3_a3/
LA  - ru
ID  - DA_2004_11_3_a3
ER  - 
%0 Journal Article
%A V. N. Potapov
%T On the maximum length of binary words with bounded frequency of units and without identical subwords of given length
%J Diskretnyj analiz i issledovanie operacij
%D 2004
%P 48-58
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2004_11_3_a3/
%G ru
%F DA_2004_11_3_a3
V. N. Potapov. On the maximum length of binary words with bounded frequency of units and without identical subwords of given length. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 3, pp. 48-58. http://geodesic.mathdoc.fr/item/DA_2004_11_3_a3/

[1] Kochergin V. V., “O multiplikativnoi slozhnosti dvoichnykh slov s zadannym chislom edinits”, Matematicheskie voprosy kibernetiki, no. 8, Nauka, M., 1999, 63–76 | MR

[2] Merekin Yu. V., “Nizhnyaya otsenka slozhnosti dlya skhem konkatenatsii slov”, Diskret. analiz i issled. operatsii, 3, no. 1, 1996, 52–56 | MR | Zbl

[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[4] Strassen V., “Berechnungen in partiellen Algebren endlichen Typs”, Computing, 11:3 (1973), 181–196 | DOI | MR | Zbl