Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2004_11_3_a2, author = {N. G. Parvatov}, title = {Remarks on the finite generability of closed classes of multivalued functions}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {32--47}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2004_11_3_a2/} }
TY - JOUR AU - N. G. Parvatov TI - Remarks on the finite generability of closed classes of multivalued functions JO - Diskretnyj analiz i issledovanie operacij PY - 2004 SP - 32 EP - 47 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2004_11_3_a2/ LA - ru ID - DA_2004_11_3_a2 ER -
N. G. Parvatov. Remarks on the finite generability of closed classes of multivalued functions. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 3, pp. 32-47. http://geodesic.mathdoc.fr/item/DA_2004_11_3_a2/
[1] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR | Zbl
[2] Gavrilov G. P., “Induktivnye predstavleniya bulevykh funktsii i konechnaya porozhdaemost klassov Posta”, Algebra i logika, 23:1 (1984), 3–26 | MR | Zbl
[3] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[4] Marchenkov S. S., “K suschestvovaniyu konechnykh bazisov v zamknutykh klassakh bulevykh funktsii”, Algebra i logika, 23:1 (1984), 88–99 | MR | Zbl
[5] Parvatov N. G., “O konechnoi porozhdaemosti zamknutykh klassov funktsii mnogoznachnoi logiki”, Vestnik Tomskogo gosudarstvennogo universiteta, Prilozhenie, no. 1(II), 2002, 34–37
[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1979 | MR | Zbl
[7] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl
[8] Baker K. A., Pixley A. F., “Polynomial interpolation and the Chinese remainder theorem for algebraic systems”, Math. Zeitschr., 143:2 (1975), 165–174 | DOI | MR | Zbl